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“The White House is talking about more regulation, generic manufacturers are calling for direct subsidies.
(...) We need to create a market for high quality manufacturing, so you can allow generic manufacturers to make
certain claims about the reliability and the quality of the manufacturing. And then (...) you pay them for the fact
that they have reliable manufacturing that might be domestic, that might be more modern, so it’s going to be more
reliable and less prone to shortages.”

Scott Gottlieb, former FDA commissioner.

1. Introduction

One should not expect shortages to occur in competitive markets, yet they occur frequently in the

generic injectable pharmaceutical market.1 Early indicators of vulnerabilities in generic drugs’ global

supply chains appeared around 2009 in the U.S., with a pronounced surge in the scarcity of injectable

oncology drugs. By 2011, the Food and Drug Administration (the FDA) documented a tenfold rise in

shortages from early 2000s levels. However, the most perplexing aspect, beyond the initial emergence

of these shortages, is their enduring nature; ongoing pharmaceutical shortages drive the growth in

disruption rates (Figure 1), both in the U.S. and Europe. Persistence in shortages led the American

Medical Association to declare the dearth of generic drugs as a national security issue in 2018.2

Pharmaceutical shortages are defined as conditions of excess demand at the patient level. In in-

jectable drug markets, shortages may initially arise due to short-run rigidities in both drug manufac-

turers’ production capacities and in end-consumers’ demand (hospital patients). These frictions prevent

higher drug prices to quickly clear the market after disruptions.3 Yet, the root causes of pharmaceutical

shortages remain elusive. The sustained surge in shortages coincided with a pronounced shift in man-

ufacturing to the Global South: in the early 2000s, only 15% of the plants manufacturing generic drugs

sold in the U.S. were based overseas; by 2020, this number had increased to more than 80%. To what

extent is the offshoring of production plants to the South associated with shortages in the North? What

are the fundamental drivers of differences in disruption probabilities across plants? Is the current equi-

librium the first best? Which policy instruments could shift the market to an equilibrium characterized

by higher supply reliability, and at what costs?

In this paper, I provide answers to these questions through four key contributions. First, I build

a novel dataset that allows me to determine the exact manufacturing location of drug products sold

in the U.S., for both onshore and offshore manufacturing plants. The data solve the traceability issues

of the market and allow me to document new empirical evidence on the causal impact of offshoring

on shortages. Second, I build a structural partial-equilibrium model of global supply and demand

for pharmaceuticals. The model quantifies firms’ trade-off between cost-cutting and supply reliability,

which endogenously generates shortages in equilibrium. Third, I use the structural model to estimate

1Injectable drugs are drugs administered thorough injections rather than taken orally. Most injectable drugs are off-patent
products operating in contestable markets (see Appendix A.5 for details).

2Source: AHSP (2018), “Drug Shortages as a Matter of National Security”. At the end of the second quarter of 2023, the
number of medications in low supply reached a new 10-year peak, with 309 ongoing drug shortages (ASHSP)

3See Section 2.2 for a detailed definition of shortages, in theory and in the data.
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the geographical distribution of supply risk. I develop an estimation method that accounts for excess

demand and allows me to back out the amplitude of shortages across drug markets. Fourth, I use

the estimated model to evaluate the counterfactual welfare implications of three policies in terms of

shortage incidence, prices, and access to drugs.

The first part of the paper examines the causal relationship between drug shortages and offshoring

– the global reallocation of production plants to the South. To my knowledge, this paper is the first to

assess whether increases in shortage frequencies and amplitudes in the North are disproportionately

driven by disruptions in manufacturing facilities that are foreign. To test this hypothesis, I construct a

comprehensive panel dataset for the years 2002-2019 that maps injectable U.S. drug products to their

exact manufacturing plant, drug labelers, and history of shortages. This dataset constitutes a key

empirical contribution as it solves long-standing traceability issues that have persisted until now in the

globalized U.S. injectable drugs market. Indeed, the lack of a reliable registry of manufacturing plants

and products has notably prevented estimating the true market share of foreign-made products and

assessing potential links with supply disruptions.4 To link each production facility to drug products,

I combine confidential FDA data on the geographical location of foreign and domestic manufacturing

facilities with detailed digitized U.S. import customs records.

Thanks to this rich dataset, I document that drugs offshored to the South experience a dispro-

portionately higher frequency of disruptions and longer-lasting shortage spells. To strengthen the

evidence for a causal interpretation, I use a dynamic difference-in-differences design to estimate the

partial equilibrium impact of reorganizing a drug’s manufacturing structure from domestic to offshore.

The specification relies on a Coarsened Exact Matching (CEM) algorithm to match similar offshored

(treatment) and non-offshored (control) sterile injectable drug plants and control for selection on ob-

servables. Offshored sterile injectable drugs are, on average, 13% more likely to experience shortages

after offshoring compared to similar drugs whose production remained U.S.-based.

To further overcome selection issues, I propose a shift-share instrumental variable that controls

for the endogeneity of the offshoring decision. I isolate a plausibly exogenous source of variation in

offshoring rates of individual drug products in order to explain the re-allocation of production plants

from the U.S. to Asia, which takes the form of a predicted diseases burden (Acemoglu and Linn, 2004;

Costinot et al., 2019). The instrument builds on a particular type of a home market effect (Krugman,

1980): the observation that demographic groups more likely to be affected by specific diseases are also

more likely to consume pharmaceutical treatments that target those diseases (the “share”), and thus

more likely to become net producers of those drugs as their markets grow (the “shifter”). I find that

drugs whose production is fully offshored to Asia not only are 54% more likely to experience shortages

when compared to the pre-offshoring period, but also that the length of these shortages is longer by an

average of 130 days.

In the second part of the paper, I propose a structural model of manufacturers’ location and pro-

duction choices in global procurement markets, in which shortages occur endogenously. The model

4Hospitals, wholesalers and even the FDA, are not always able to find out which manufacturer makes which drugs
or where factories are located, because manufacturing plants’ locations and outsourcing relationships are considered trade
secrets (Department of Homeland Security 2018). This information is the property of the company that holds the sales license.
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serves several purposes. First, it generates insights into the incentive dynamics of supply disruptions

and rationalizes the off- shoring correlations observed in the data. Second, it provides a framework to

analyze the manufacturers’ response to the moral hazard incentives created by the offshoring option.

To evaluate what motivates manufacturers to let supply periodically fail, the model captures key

characteristics of the injectable drug market. It features international procurement contracts between

U.S. buyers (hospital conglomerates) who seek to procure a homogeneous drug product from a hetero-

geneous set of suppliers (pharmaceutical manufacturers). These suppliers’ investments in production

plants (maintenance and upgrades) are not fully observable by the regulator (the FDA). Periodic reg-

ulatory inspections of plants are necessary to monitor production quality. Buyers rely on competitive

bidding to allocate market shares to suppliers through year-long procurement contracts, establishing

some short-term market rigidity, as prices and capacities are determined before disruptions materialize.

In the model, the occurrence of disruptions is determined by exogenous supply shocks, but the

probability of a subsequent shortage event can be targeted by the firm. Suppliers’ location, pricing

and supply decisions indeed directly endogenize the realization of shortages. While each individual

manufacturer has no control over the realization of exogenous shocks (natural disasters, trade shocks,

or contamination may occur independently on facility investments), they can choose the probability

that a shortage occurs. Manufacturers have two available margins to insure against shortage risks:

first, they can build capacity buffers by producing above the initially contracted quantity levels; second,

they can choose production locations with low-disruption risks. Both assurance margins may however

translate into higher production costs for suppliers (e.g. surplus losses, cost of facility upgrades or

quality checks). The pivotal manufacturer’s trade-off between supply reliability and cost-cutting thus

appears in both steps of the firm’s problem: in step 2, the manufacturer trades-off price levels versus

surplus quantities; in step 1, they trade-off disruption risk versus location-specific production costs.

This tractable model can be extended to a variety of industries affected by supply disruptions,

enabling researchers and policymakers to better quantify the complex trade-offs that come with off-

shoring. In particular, the model may accommodate many different demand systems, and only requires

data on prices, observed quantities sold, and indicators for manufacturer-level disruptions.

I estimate the parameters of the structural model using a multi-step method of moments procedure.

To identify supply and demand parameters, I exploit moment conditions that reflect the distribution of

shortages across locations, drug markets, and firms, as well as the global production patterns observed

in the data. As contracted drug quantities are unobservable during shortage periods, I first develop

an estimation method that accounts for censoring issues due to excess demand.5 With the structural

model in place, I then estimate the geographical distribution of supply risk and back out the amplitude

of shortages across drug markets.

On the demand side, I find that private buyers display high price sensitivity when selecting sup-

pliers for the drug products they source but demonstrate low taste for the historical reliability of these

suppliers. Indeed, the demand parameter capturing private buyer’s taste for supplier reliability, in-

5Standard logit models of demand typically estimate parameters based on observed sales quantities. However, biases in
these estimates can arise when capacity constraints or demand and supply shocks lead to excess demand, thereby distorting
observed market shares.
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formed by their history of shortages, is small and statistically insignificant. There are two potential

explanations behind this result. First, although buyers do value supplier reliability, traceability issues

in long and decentralized supply chains, coupled with high degrees of contestability, dampens their

ability to accurately track the history of shortages.6 As a second explanation, the procurement auction

system, alongside the institutionalization of perfect substitutability between generic versions of a drug,

may encourage private buyers to prioritize price over other attributes. I argue that this second explana-

tion only hold to the extent that prices become the only observable characteristics of generic products

at the time of procurement.

On the supply side, the average U.S.-based manufacturing plant tends to maintain less buffer

stocks than its counterpart in the global south. This is due to higher fixed and variable costs, which

make holding surplus inventory more expensive for American firms, leading them to prefer just-in-

time production—a distinctive feature of the U.S. generic drug industry. However, I find that average

capacity yields—indicative of the proportion of supply that withstands disruptions—are considerably

lower for offshored plants in the Asia. This highlights that these facilities experience more substantial

disturbances compared to their American counterparts. While firms located in the U.S. build less

inventories than Asian firms, conditional on shocks, the supply of Asian firms drop more on average

(e.g. because they may not be investing in reliable manufacturing processes).

Which policy instruments could shift the market to an equilibrium with higher supply reliability,

and at what costs? I use the estimated model to study the welfare implications of two groups of coun-

terfactual policies. The first counterfactual rests on the premise that the offshore production structure

creates frictions that may not be alleviated. It then focuses on providing tax breaks to re-shore produc-

tion to the U.S., implementing the suggested 10.5% reshoring subsidies on firms’ revenues from sales.

Conversely, the second group of counterfactual experiments posits that the current system could be op-

timally leveraging regional comparative advantages— allocating the production of innovative branded

drug products to the North and generic, off-patent versions to the South. Counterfactuals within this

group thus aim to alleviate frictions in procurement contracts and tackle market failures at the root.

I focus on two distinct sub-group of policies that implement changes in contracts. The first policy

considers introducing short-run ex post price variation in response to disruptions. Under this counter-

factual, I permit drug unit prices to be indexed on supply conditions and to increase proportionally

with the magnitude of supply scarcity. This scenario implicitly creates a capacity market in which firms

who are able to supply during shortage periods are paid more. The second policy considers enforcing

penalties for supply failures. Enforcing penalties for failure-to-supply may allow reliable suppliers to

benefit from higher profit margins, thereby incentivizing investments in the production process.

Each considered counterfactual thus deals with one market failure. Subsidizing reshoring addresses

regulatory deficiencies outside of the U.S. borders. Pricing capacity targets short-run price rigidities in

6This explanation seems to be the one supported by market players. Vizient, a prominent private buyer group, started to
contract in 2021 with drug shortage services from the University of Utah to access information on the history of shortages
and receive alerts about upcoming ones. The FDA recently advised buyers to inquire about the precise identity and location
of their suppliers when drafting contracts. However, no legal mandate exists for such disclosures, nor does the U.S. regulator
have the authority to intervene in procurement contracts.
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procurement contracts. Enforcing penalties for failures to supply addresses the inability of the market

to capture and reward reliability in production.

The counterfactual experiments show that the net welfare gains of reducing supply shortfall levels

may be large and are not offset by the associated increase in prices. All three scenarios lead to higher

consumer welfare, thus corroborating that the current level of shortages may not be achieving the first-

best equilibrium. While under all scenarios, reaching higher consumer welfare levels comes at the cost

of higher unit prices and an increase in market concentration, this does not result in crowding out

effects on the patients’ side. The share of patients not consuming the drug products they need decrease

under all scenarios. Enforcing penalties results in a 30 to 48% increase in consumption access to drug

products and a 30 to 37% increase in consumer welfare, while allowing the market prices to react to

excess demand results in a 2 to 5% increase in consumption access and a 2 to 9% increase in consumer

welfare.

While heavily emphasized in the recent policy debates, switching back to a re-shored system

achieves the lowest increase in welfare (around 1-2%) and the highest increase in price (around 30% at

the suggested 10% tax break level). Its effectiveness in reducing shortage levels is moreover the most

contrasted among all three scenarios: while the average probability of shortages decreases by 7%, the

expected share of excess demand increases by 10%. This is partly driven by higher production costs

in the U.S., which makes building surplus more expensive. On the contrary, the highest increase in

consumer welfare is achieved by implementing a system of penalty for failures to supply. Enforcing

failure-to-supply clauses effectively rewards supply reliability through higher producer margins poten-

tially allowing drug manufacturers to invest back in facilities maintenance and high-quality production

processes.

Figure 1: Yearly U.S. Drug Shortages and Offshoring

Notes: The left figure displays the yearly number of U.S. drug shortages as reported to the UUDIS. The green, dashed line reports the number
of new drugs being notified as short in a given year. The yellow, solid line reports ongoing shortage events, thus capturing the length of
disruptions in time. On the right graph, I superpose the time series of newly notified shortages with a plot of the share of foreign-based
manufacturing facilities for generic drugs marketed in the United States. Plants location data are from the FDA’s Center for Drug Evaluation
and Research (CDER). Yearly records of foreign plants authorized to market generic drug products in the U.S. do not come with records of
the drug products manufactured in the plants, so that the witnessed increase in the share of foreign plants over the 2000-2019 period does
not necessarily correspond to the production of the drugs going short.
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Related Literature This paper advances three connected areas within the International Trade litera-
ture: the literature on global value chains and offshoring dynamics, studies of firms boundaries, foreign

outsourcing and product life-cycle, and the emerging research on supply chain resilience.

I first contribute to the theoretical trade literature modeling Global Value Chains (GVC) ( Antras

and Chor 2013, 2018; Alfaro et al. 2019; Costinot, Vogel, and Wang 2012, 2013) and offshoring mech-

anisms ( Grossman and Rossi-Hansberg 2008, 2012; Antràs and Staiger 2012; Baldwin and Venables

2013; Baldwin and Robert-Nicoud 2014). While prior theoretical works studying the impact of falling

offshoring costs on factor prices have emphasized gains-from-trade in general equilibrium, I under-

score that the complexity, length, and lack of transparency of global supply chains may also make it

increasingly complicated to capture product characteristics in some commodity-like markets. I develop

a tractable structural framework that can be brought to the data to quantify the manufacturers trade-off

between investment in supply chain’s reliability and cost-cutting. This partial-equilibrium model can

be extended to a variety of settings studying firms’ production and location choices.

Understanding what happens to products reaching the end of the innovation life-cycle is one of

the central objects of the international trade literature (Chaudhuri, Goldberg, and Jia, 2006; Bilir, 2014).

Mapping connections between patent expiration and the re-organization of production nevertheless

faces the challenge of tracing products in long and complex supply chains. My paper adds to this

literature by first providing new empirical evidence that commodity-like products at the end of the life

cycles are likely offshored and outsourced, and second by solving supply chains transparency issues

in injectable drug markets. My work in this regard particularly relates to the recent literature studying

foreign outsourcing (Bernard et al., 2020; Antràs et al., 2023; Fort, 2023), which uses new survey data

or microdata on multinational firms to fill empirical gaps about “factoryless goods producers.”

My paper shares the closest connection with Bernard et al. (2020), which highlights that trade lib-

eralization provided opportunities for innovative firms to offshore production of low-quality varieties,

focusing production efforts on the development of high-quality goods and, hence exploiting compara-

tive advantages. The boom in drugs offshoring was in part made possible by several waves of patents

expiration. Often referred to as “patent cliffs” these waves happened in the United States since the late

80s, thus allowing manufacturers in Southern countries to produce drugs with close to zero R&D costs.7

The most significant of these patent cliffs coincided with the 2011-2012 peak of shortages, with patents

expiring for multiple blockbuster drugs, including Lipitor (Atorvastatin) and Plavix (Clopidogrel).8

I present evidence underscoring that the increased international division of production must go in

hands with an adaptation of procurement systems to the new market structure, and stress that supply

chain resilience should arise not solely from the supply side but also from the buyers’ side. This is nec-

essary to ensure that pricing mechanisms effectively capture and incentivize quality, thereby preventing

7Typically, pharmaceutical patents last for 20 years from the date of filing, although there can be several patents associated
with a single drug (covering different uses, formulations, etc.). Generic entry is made possible after these patents expire, which
is associated with a significant decrease in prices.

8Two other big patent cliffs marked the U.S. over the last 40 years: in the late 1980s and early 1990s, many drugs
discovered in the 1970s (when modern drug discovery really took off) began to go off-patent. This included for instance the
patent expiration in 1992 of captopril, a groundbreaking heart failure and hypertension drug. The late 1990s were marked
again by patent expirations of several significant drugs, such as Prozac (Fluoxetine)
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markets from unraveling. If U.S. buyers seek to procure goods meeting U.S. manufacturing standards

at lower manufacturing costs, they must provide not only regulatory but also financial incentives for

South manufacturers to meet these thresholds and differentiate their products to those they sell in

their local markets. There cannot be product differentiation without financial incentives that recognize

variations in product characteristics.

This paper centrally contributes to the literature on supply chain resilience and disruptions (Gross-

man, Helpman, and Lhuillier, 2023; Elliott, Golub, and Leduc, 2022; Khanna, Morales, and Pandalai-

Nayar, 2022; Pichler et al., 2023) by expanding our understanding of the consequences of offshoring in

critical industries, highlighting the importance of balancing cost savings with supply chain resilience.

While Grossman, Helpman, and Lhuillier (2023) and Elliott, Golub, and Leduc (2022) provide theoreti-

cal foundations to understand factors leading to supply chains resilience, I rely on a new and detailed

data mapping of products to suppliers to offer tools that allow for analysis of manufacturers’ incentives

to opt for low resilience levels. I build on this dataset to provide new empirical evidence on the lack of

resilience of global supply and to explicit the mechanisms leading to changes in market resilience.

A large strand of the supply chains resilience literature investigates the propagation of supply

shocks within firms’ networks by leveraging large exogenous shocks. Most of this literature exploits

natural disasters to study the role of firm-level linkages in propagating disruptions. Boehm, Flaaen, and

Pandalai-Nayar (2019), Carvalho et al. (2020) and Barrot and Sauvagnat (2016) study the propagation of

negative shocks across regions after the 2011 Tohoku earthquake in Japan, while Castro-Vincenzi (2022)

study the car industry. Studying Indian firms networks, Khanna, Morales, and Pandalai-Nayar (2022)

suggest that the most resilient supply chains are those with larger suppliers, more differentiated inputs,

and a low number of alternative suppliers. Building on this insight, fragmentation of supply chains,

lack of products differentiation and high degrees of market contestability in generic pharmaceutical

markets make them especially vulnerable to experience a lack of resilience.

This paper also contributes to three distinct strands of the Health Economics literature: the study

of generic pharmaceutical entry, the analysis of factors causing drug shortages, and the Industrial

Organization research on parallel trade and quality regulations in the pharmaceutical sector.

This paper directly connects to the reduced-form health literature examining participation of

generics in pharmaceutical markets. A large body of work analyzes the entry of generics post patent

expiration in the U.S. ( Scott Morton 1999b, 2000). Frank and Salkever (1997) pioneered the exploration

into the relationship between generic entries and pharmaceutical price adjustments. The effect of ex-

ogenous firms entry on generic prices is further documented by Conti, Berndt, and Murphy (2017)

and Conti and Berndt (2019), who find evidence of a decreasing number of suppliers over the pe-

riod 2004-2016, attributable both to more exit and less entry. Frank, Hicks, and Berndt (2019) estimate

that, between 2007 and 2016, generic prescription drugs sold at retail pharmacies experienced a eighty

percent drop in the consumer price index.

The focus on recent offshoring trends in off-patent pharmaceuticals was established by Conti,

Berndt, and Murphy (2018) and Kaygisiz et al. (2019), who discuss the geography of pharmaceuti-

cals supplied to the United States and the regulatory shifts implemented under the Generic Drug User
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Fee Amendments (GDUFA) to process an influx of applications from overseas facilities. However, these

studies do not possess information about the specific pharmaceutical products made in each plant.

The economic literature studying drug shortages is sparse. The lack of comprehensive data that

ties manufacturing companies and sites to products has impeded research efforts to analyze the impact

of changes in the geographical structure of production on shortages. On the health policy side, former

FDA commissioner Woodcock was among the firsts to describe how the lack of reward for manufactur-

ing quality can reinforce price competition and lead to a market in which quality problems are severe

and common enough to drive shortages (Woodcock and Wosinska, 2013). There is however a dearth of

quantitative studies that examine the drug shortage problem. Yurukoglu, Liebman, and Ridley (2017)

argue that the Medicare Modernization Act (MMA) of 2005 sharply lowered reimbursement rates for

provider-administered sterile injectables drugs, which had in turn an adverse impact on profit mar-

gins for generic sterile injectable drugs.9 In a descriptive study, Stomberg (2016) further underlines the

responsibility of drug manufacturers’ capacity constraints and the FDA regulatory scrutiny.

I solve both limitations encountered in these literatures by: (i) linking manufacturing firms, sites

and products and (ii) building a structural model of supply and demands in global pharmaceutical

markets to assess the impact of counterfactual policies on shortage outcomes.

Structural work related to pharmaceutical markets stems from the Industrial Organization literature

studying regulatory policies, parallel trade, and drug quality. Part of this literature focuses on the

effects of the expiration of drug patents on imports and trade, as Chaudhuri, Goldberg, and Jia (2006),

who find that price controls may be welfare-improving when used to counterbalance the welfare losses

from other regulatory measures, or on the effects of parallel imports on patented drugs (Dubois and

Saethre, 2018; Grossman and Lai, 2008).

Another portion of this literature investigates the equilibrium implications of price regulations

in developed countries, focusing on price dispersions, price discrimination, and cross-border ef-

fects (Dubois, Gandhi, and Vasserman, 2022; Dubois and Lasio, 2018; Dubois, Gandhi, and Vasserman,

2022). In a working paper, Ganapati and McKibbin (2019) study two elements of price dispersions

of pharmaceutical prices across countries: non-tariff trade barriers and buyers’ bargaining power. On

their part, Dubois, Gandhi, and Vasserman (2022) estimate a structural model of demand and supply

for pharmaceuticals to assess the effects of a hypothetical U.S. reference pricing policy that would cap

prices in U.S. markets by those offered in Canada. All these papers rely on proprietary data from

IQVIA, which link drug sales to labeler firms (patent holders), but do not actually provide information

about the actual identity of manufacturing locations. My detailed mapping of supply chains allows

analysis of cross-country trade of pharmaceuticals beyond drug labelers.

My paper is most closely related to Atal, Cuesta, and Sæthre (2022), who analyze the equilibrium

9Although adjustments in provider reimbursements may have contributed to reduce product margins, drug prices in
the U.S. are not subject to direct regulation. Instead, they emerge through negotiations between private buyers (Group
Purchasing Organizations) and suppliers. The Medicare reimbursement framework bases its rates on the average negotiated
prices observed over the previous two quarters, at the product level. Industry reports moreover underscore that intense price
competition was already a defining trait of the generic sterile injectable market well before the 2005 MMA’s implementation.
Further nuancing the MMA’s implications, drug shortages have been observed to escalate in a concurrent manner in Europe,
where healthcare systems are very different from the U.S. and where the MMA did not take place (see Section B.4).
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effects of quality regulation in the generic pharmaceutical market. They underscore the trade-off

of increasing quality regulations in Chile, which results in an increase in market concentration and

prices.10 I emphasize that, although allowing the market to select for production quality comes at

the cost of higher prices and market concentration, this does not result in crowding-out effects on the

patients side and yields both lower disruptions in supply and higher welfare levels.

Outline The paper proceeds as follows. Section 2 describes institutional features of the market

and the data used to map injectable drugs supply chains. Section 3 provides new empirical evidence

on the links between South production and shortage spells. Section 4 builds a model of generic drug

shortages that endogeneizes supply disruptions. Section 5 estimates the model. Section 6 evaluates

counterfactual policies. The last section concludes. An Appendix collects additional results and proofs.

2. Market Structure: Tracing Injectable Drugs’ Supply Chains

This section first summarizes the functioning of the U.S. Market for generic drugs and provides a formal

definition of shortage. The definition underscores the key market frictions and the distinctive features

of drugs that are especially prone to shortages. I end this section by describing the data collected and

the process of mapping injectable drugs supply chains.

2.1. Institutional Features of the U.S. Generic Drug Markets

Entering Generic Drug Markets. To manufacture a new innovator drug (“branded drug”), one needs a

patent. These patents generally have a limited life-span (typically twenty years in the United States).11

On the day a patent expires, numerous generic pharmaceutical companies — referred to as generic

sponsors, or “labelers”— stand ready to market it and submit an Abbreviated New Drug Application

(ANDA) (see Appendix Figure A1 for a graphical representation of the market).12

The institution in charge of the regulatory oversight of this market is the Food and Drug Admini-

tration (the FDA). The FDA is responsible both for the delivering of marketing licenses (ANDA for

generics) and for ex-post drug quality assurance through plant inspections.

The manufacturing, involving the transformation of active pharmaceutical ingredients (API)

to finished drug form products (FDF), can be conducted by labelers’ own plants or outsourced to

contract manufacturing organizations (CMO). This process can be either fully or partially offshored.

Throughout this paper, ”labelers” will denote firms acting as generic sponsors, while “manufacturers”

will pertain to the manufacturing facilities.

10Quality regulation increased demand for generic drugs by resolving asymmetric information, leading in equilibrium to
higher exit rates of low-quality manufacturers and entry of high-quality drug products.

11Most drugs however lose their exclusivity after 7 years, and the first approved generic drug receives 180 days of exclu-
sivity. Source: FDA(https://www.fda.gov/drugs/development-approval-process-drugs/)

12An abbreviated new drug application (ANDA) contains data that are submitted to FDA for the review and potential
approval of a generic drug product. The estimated cost of an ANDA is $1-5 million (Berndt and Aitken, 2011). See Appendix
A.1 on the regulatory costs of entering the U.S. generic market.
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The U.S. Procurement System. Group Purchasing Organizations (GPOs) serve as pivotal buyers,

working as intermediaries between hospital pharmacies and drug manufacturers. GPOs directly

engage with drug labelers to negotiate bulk product prices, aggregating demands from member

hospitals to negotiate volume discounts, thus securing drug prices that individual hospitals might not

independently obtain. A substantial 96-98% of hospitals engage in drug procurement via GPOs, with

80% of hospital purchases occuring through these entities. According to the FDA, “GPOs account for

over $100 billion of the drugs purchased in this country in a given year”.13 As of 2018, the four largest

Group Purchasing Organizations (GPOs) accounted for 90 percent of the medical supply market.

Subsequent to purchases, payers, such as insurers and Medicare, reimburse hospitals using fixed

payments, based on the weighted average of sale prices in the previous two quarters. Refer to Section

A.2.1 for a detailed overview of the U.S. procurement process.

Institutionalization of Perfect Substitutability. The “Drug Price Competition and Patent Term

Restoration Act of 1984,” also known as the Hatch-Waxman Amendments, established bioequivalence

as the basis for approving generic copies of drug products.14 Marketing a generic product thus only

requires labelers to demonstrate bioequivalence to the brand.

By making bioequivalence the basis for approving generic copies of drug products, the Hatch-

Waxman Act (1984) institutionalized that all generic versions of a same innovator drug are perfectly

substitutables. Conditional on the attribution of an ANDA marketing license, buyers (GPOs and

hospital pharmacies) deem all marketed generic versions of a drug to be of satisfactory quality and

fully interchangable. In turn, the lack of transparency of supply chains means that buyers themselves

cannot directly observe and reward quality, compelling them to prioritize the lowest-priced drug. This

invariably propels prices to be set almost “auction-style”: GPOs use competitive bidding through

online reverse procurement auctions to select the lowest-cost supplier for member hospitals. Current

contracting practices thus contribute to a “race-to-the-bottom” in pricing.

Low-Profit Margin and Price Competition in Generic Markets. High degrees of contestability in

the market further discipline prices down, as manufacturers constantly face the threat of being undercut

and lose the next procurement contract. All these factors create financial uncertainty for suppliers,

which makes low-margin generic markets especially likely to “unravel” due to adverse selection.15

Theory predicts an improvement in production quality due to competition only if price is greater than

marginal cost: in that case, firms facing competition have an incentive to increase their quality in order

to attract patients (Moscelli, Gravelle, and Siciliani, 2021). If price is below marginal cost, then increases

13 Burns and Lee (2008) unveil that although 41% of surveyed U.S. hospital providers affiliate with multiple GPOs, they
route most of their purchases through a primary GPO, reserving secondary affiliations for specialized contracts.

14These Amendments permit the FDA to approve applications for generic versions of brand-name drugs without repeating
costly clinical trials to establish safety and efficacy. See Bronnenberg et al. (2015) for a discussion of brand vs. generics.

15When producing a drug has low margins, only firms with very low production costs tend to survive, which makes
producing the drug even more low margins, in a “doom loop” so that there may be no price at which the market “works”.
The survival of very low-costs firms only is a characteristics that is correlated with lower quality in production.
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in competition can actually lead to reductions in manufacturing quality.

The more generic manufacturers entered the market, the lower the price of the drug. Average

monthly prices are lower post-loss of U.S. patent exclusivity (LOE) than pre-LOE, for all drug formu-

lations. Aggregate price declines appear to be larger among physician-administered infused/injected

drugs (38-46.4%) than among orally formulated drugs (25-26% decline) (Conti and Berndt, 2016).16 The

average price of a drug product with a single generic manufacturer is 39 percent lower than the brand,

while this price falls down to 95 percent below the branded price with six or more generic manufac-

turers (Conrad and Lutter, 2019).17 Injectables with lower prices have more vulnerable supply chains:

sixty percent of pediatric oncology drugs that cost less than $10 were in shortage in 2022.18

2.2. Drug Shortages: Definition and Key Features

Defining Shortages: Theory versus Empirics. A shortage is a condition of excess demand — in contrast

with surplus that is defined as excess supply. In a perfectly competitive market, shortage spells should

be transitory; whenever demand exceeds supply, prices should increase and provide incentives for

existing and new suppliers to increase production until there is enough supply to meet demand again

(market equilibrium, see Appendix Figure A3). In practice however, markets are usually not perfectly

competitive, and many frictions may lead shortage spells to last longer. In this respect, the market

for prescription drugs and especially generic drugs, which account for most drug shortages, display

shortages that persist after supply disruptions, despite some price increases.

Shortages of sterile injectable drugs can occur due to short-run rigidities in both drug manufactur-

ers’ production capacities and in end-consumers’ demand (hospital patients). This means that product

disruptions, whatever their causes, translate into shortages as higher drug prices cannot clear the mar-

ket. Three reasons explain the low price elasticities of demand and supply for medically necessary

prescription drugs. First, because these drugs are by definition medically necessary, they have few

substitutes and consumption generally cannot be shifted over time.19 Second, shortages are defined at

the patient’s level, and final consumers’ demand for prescription drug products is largely unaffected

by changes in price, as they purchase through health insurance contracts.20 Third, on the supply side,

costly specialized equipment is required to produce prescription medications. Production processes are

complex, especially for sterile injectable products, and firms are required to adhere to Current Good

Manufacturing Processes (CGMPs). Costly excess inventories and high costs of switching assigned

16For injectable or otherwise physician-administered drugs, Conti and Berndt (2016) also find that when the number of
manufacturers increases from one to two, average prices fall about 25-30%.

17Scott Gottlieb, former FDA’s commissioner, at CBS News in May 2023: “50 percent of generic drugs right now in a
generic manufacturer portfolio lose money. So a generic manufacturer loses money on half of their drugs that they market.”

18Premier, a leading GPO, reported in 2022 that of the more than 400 drugs they had under contract that cost $3 or less
per vial, 42 percent were actively in shortage, while only six percent of drugs that cost more than $10 per vial were short.

19A drug is considered to be medically necessary if it “is used to treat or prevent a serious disease, and there is no other
available source of that product or alternative drug that is an adequate substitute.” (Fox et al., 2009)

20Price sensitivity is generally low for the kind of drugs going short (inpatient, mostly oncology and pediatric treatments).
Although hospital providers may face price increases during shortages, their demand for prescription medications is not very
responsive to the price paid to manufacturers for the drug, especially for low price medically essential generic drugs.

11

https://offers.premierinc.com/DrugShortagesThesis-LandingPage.html


production lines limit the industry’s capacity to increase capacity in response to an increase in price.

Prices of drugs in shortage may increase, though the FDA only found sustained price increases

for 18% of drugs that went into shortage in 2013-2017. According to a 2019 survey released by the

American Society of Health-System Pharmacists (ASHSP), almost 80 percent of hospitals said drug

shortages resulted in increased spending on drugs to a moderate or large extent.

Contracting Practices Create Short-term Price and Capacity Rigidities. In practice, market prices

are determined during the procurement process and results from negotiations between buyers (Group

Purchasing Organizations or Hospitals) and suppliers (drug labelers). Though these prices are not

directly subject to government regulations in the U.S., the standard procurement contract binds for one

to two years, which means that negotiated prices must be honored during this period).21 Sellers are

thus generally not allowed to sell their products at a higher price while the contract is valid.22

(a) WAC (GPO to Manufacturers) (b) AWP (Hospitals to GPO)

Figure 2: Price Variations Around the Start of Shortage Spells

Notes: Balanced panel of generic injectable drugs in shortage from 2002 to 2019 from the UUDIS. AWP and WAC prices
are from IBM Micromedex (“RedBook”). All prices are adjusted for inflation using CPI (base year: 2010). Prices do adjust
upwards post-shortage, even if the current structure of contracts between buyer GPOS and suppliers slow down adjustments.
For more discussions on pricing, see Appendix F.1.

Governmental price controls only impact drug prices through the insurance market, by determining

reimbursement amounts for drugs prescribed through Medicare. These regulated reimbursement prices

are however based on market conditions as they adjust based on the past two-quarters market prices,

which have been negotiated between suppliers and buyers. While in practice we do observe significant

price increases during and after shortages, the current procurement systems nevertheless impose some

short-term price rigidities and most prices adjustments take at least 3-4 quarters to occur (see Figure

21This was confirmed by a discussion with the President of the Group Purchasing Organizations Association, Todd Ebert.
He stressed that GPO generally tries to work with firms to solve shortages in order for them to honor their contracts at the
negotiated price, considering sourcing from alternative suppliers as the last-recourse solutions.

22At least through the contract they negotiated with their own GPO; drug manufacturers theoretically can and sometimes
do negotiate sales directly with provider hospitals and pharmacies, or through other GPOs, at higher prices

12



2 and Appendix F.1 for more discussions on pricing.). This pricing feature that procurement contracts

set some ex-ante per-unit level of prices that must be honored during the length of the contract validity

is nevertheless common to many markets, in particular commodity-like markets.

The low price responsiveness of demand for injectable oncology drugs also has implications for

inventories and capacity decision. If there is an excess supply of an oncology drug, there may be no

market for it, even at a low price. The combination of limited ability to compel supply (through failure-

to-supply clauses or contractual breach provisions) and low price elasticity means that manufacturers

face an asymmetry of incentives: there is little cost (except reputational) of producing too little of one

drug (rather than another), but a potentially high cost of producing too much of that drug.

Key Features of Shortages. Two features of U.S. (and European) shortages are critical to understand

the problem. First, disruptions are supply-driven and due to “manufacturing quality” issues. Second,

disruptions mostly affect generic markets, and among them sterile injectables.

U.S. drug shortages mainly occur because of disruptions in the manufacturing process. 70% of the FDA’s

reported reasons for medication shortages were product-quality issues that caused a mandatory or

voluntary recall or cessation of production. This may include chemical, bacterial contamination or

equipment failures. Only 4% of all shortages in the UUDIS data are caused by a sudden increase in

demand (see Figure A5). Discontinuations by some firms of older, medically necessary products are

also often triggered by capacity constraints and quality-related production line disruptions.23

In theory, supply disruptions do not need to result in product shortages; if there are enough ex-

cess capacities or redundancies that can be utilized as backups, or if frictions are small and the mar-

ket quickly adjusts production level and prices as a response to disruptions, then shortages could be

avoided. Most of these “manufacturing quality” issues are direclty triggered by lack of incentives

to produce less profitable drugs and invest in manufacturing quality and redundant capacity. Drug

manufacturers navigate pivotal business decisions throughout a drug’s lifecycle, such as initiating new

products, maintaining existing ones, or investing in manufacturing facility maintenance and enhance-

ments. Management may opt not to launch a drug if anticipated profitability is low or uncertain. Fur-

ther, diminished profitability of a marketed drug may prompt the firm to cease production or restrict

manufacturing investments, potentially resulting in supply disruptions.24

There is indeed little financial incentive to produce older generic, off-patent medications. The drug

shortage problem almost entirely affects generic drugs, which represent 90% of prescriptions in the U.S.,

23Most shortages caused by delays and capacity issues are actually driven by quality-related shutdowns. Note that com-
panies often do not report the direct cause of a shortage, as this is not compulsory.

24Many quotes in FDA hearings reports announce such product discontinutions from generic drug manufacturers: “Right
now our energy is focused primarily on the U.S. oral solids business... There are significant pricing declines. At least in the medium term,
we don’t see a shift to that situation, so we’re assessing how best to optimize that, given that dynamic.” (Comments made by Novartis
(Sandoz) during the Q4, 2017 earnings call before announcing proposed sale of core U.S. generics business in Sept. 2018).
Another quote from the generic manufacturer Teva in Q1 2011: “The overall situation on U.S. generics and pricing ... we had a
consolidation on the buyers side and you’ve had a situation where suppliers may be accepting of lower prices because they used to have a
healthy margin ... and if you take a race to the bottom on price ... the only way out of that negative spiral is of course to stop it ... About
80% of the product we will get out of and they will move to other suppliers and about 20% of the product we will see an increase in price”
.
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and in particular sterile injectable drugs, including cancer drugs, anesthetics, and antibiotics. These drugs

account for 80% of the shortages that occur despite only representing 29% of the entire generics market

in volume. Sterile injectable drugs are mainly used to treat acute-care patients in hospitals and are

generally administered by physicians. Two-third of sterile injectable drugs on the shortages list are

classified in five disease areas: oncology, anti-infective, cardiovascular, central nervous system and pain

management. Of the total market for generic sterile injectable drugs, fully 55% of these medicines were

on the shortage list in 2011-2019 (see Figure A4b).

2.3. The Case of Sterile Injectable Drugs

Sterile injectable markets exhibits several technological features that make them prone to shortage risks.

First, patients demand for this type of drug is very inelastic on the short and supply and demand

must match in fine time intervals. Most of these drugs are cancer or pain management drugs used to

treat acure care patients in hospitals, so that delaying treatment is costly for patients (health outcomes

are conditioned by the consumption of the drug) and they are de facto “necessary goods”. Second,

because manufacturers are selling homogenous generic products (Hatch-Waxman Act, 1984), profit-

margins can drop dramatically whenever there is more than one manufacturer of a molecule-form

product. Third, storing sterile injectable pharmaceuticals is costly. They need to be kept sterile and

can be sensitive to light and temperature. Sterile injectable products must be produced in highly

specialized facilities with dedicated lines.25 These injectable drugs are also harder to store, and most

need to be refrigerated or are sensible to lights.26 These high operational costs contribute to increase

fixed production costs for the manufacturer. Markups not being high enough to cover fixed costs for

this type of drugs may in turn explain the lack of manufacturer investments in facilities. Appendix

Section (A.3.2) discusses injectable drug markets in more details.

The slim profit margins of generic sterile injectable drugs created low incentives for manufacturers

to shell out factory updates in order to avoid supply disruptions. In the case of sterile injectables, there

is moreover very little margin for errors in the manufacturing process, contrary to drugs in tablets or

capsules. Some of the drug shortages reported in the U.S. have been traced to facilities that have been in

operation since the 1960s with almost no factory improvements (GAO, 2016). Moreover, re-purposing

existing factories to manufacture antibiotics or cancer drugs can take years.

2.4. A Novel Dataset: Tracing Drug Supply Chains

This project builds a new comprehensive panel dataset that maps generic sterile injectable drug prod-

ucts to their plants, labelers and shortages history. This dataset solves traceability issues in the global-

ized U.S. injectable drugs market and constitutes a major empirical contribution of this paper. The lack

of a reliable registry of manufacturing plants and products has notably prevented estimating the true

market share of foreign-made products and assessing potential links with supply disruptions. To my

25Production must take place in a “clean room” environment to make them perfectly sterile
26These factors may explain why supply disruptions are not easily corrected or why hospital pharmacists may not be

easily able to stockpile these medicines in prevision of shortages.
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knowledge, this paper is the first to assess whether increases in shortage frequencies and amplitudes

in the North are disproportionately driven by disruptions in manufacturing facilities that are foreign.

To solve traceability issues in the injectable drugs market, I build on three main blocks of data, the

third one unifying the first two blocks. The data construction structure is illustrated in Figure 3.
A Novel Dataset: Mapping Injectables Supply Chains

Drug Shortages
UUDIS Wordfiles

Product and Labeler-Product (NDC) shortages.

Drug names, shortage reasons, start and end dates

Injectable List
“OrangeBook” [FDA]

U.S.-Approved drugs with Thera-

peutic Classes & Characteristics

Historical Pricing
“RedBook” [Micromedex] Prices

Quarterly wholesale prices (AWP & WAC)

at the Labeler-Product level (NDC)

Quarterly U.S. Sales (Hospitals)
Medicare Part B [CMS]

List of Approved
Plants and Locations

CDER [FDA]

Plants’ Inspection Records
& Warning Letters [FDA]

U.S. Customs Data
Datamyne

Importer names and addresses,
shipment description, quantity and weight

Record Linkage Customs

Figure 3: Overview of Data Structure

Notes: Three main blocks of data were used for this paper. The first block captures the characteristics of each sterile injectable drug market
(downstream). The main data of this block are the drug shortage data (UUDIS), which are complemented with data on drug characteristics
(FDA’s Orange Book) and pricing data (FDA’s RedBook). Medicare Part B National Summary Files are also used to compute quarterly sales.
The second block maps the upstream market and records approved plants and their location (FDA’s CDER data). I complement these data
with digitized inspection records and warning letters. The third and last block unifies the first two: I use detailed U.S. Import Customs
Data (Datamyne) to link drug products to manufacturing plants and labelers, using probabilistic records linkage techniques. More details in
Appendix F.2 and E.5.

The first block build a drug-labeler level dataset that captures the characteristics of the sterile in-

jectable drug markets. I first obtain the list of all injectable drugs marketed in the U.S. in each year (short

and non-short) from the FDA’s Approved Drug Products with Therapeutic Equivalence Evaluations (so

called “Orange Book data”). The Orange Book contains information on a drug’s generic/brand status,

labeler names, drug ages and therapeutic category. I obtain historical prices data for all U.S. mar-

keted drugs from the “Red Book”, a privately-owned dataset proprietary of IBM Micromedex. The

“RedBook” provides Average Wholesale Prices (AWP, the price charges by GPOs to hospitals) and

Wholesale Acquisition Costs (WAC, the price paid by GPOs to manufacturers) at the NDC level.27 De-

tails on Pricing can be found in Appendix F.1. I complement the data with Medicare Part B’s National

Summary Files and pricing data to obtain quarterly sales quantities and Average Sale Prices (ASP).

Finally, shortages history were provided by the University of Utah Drug Information Service

(UUDIS), which compiles information on current and past shortages that were reported to the Ameri-

can Society of Health-System Pharmacists (ASHP) and the FDA. I processed two versions of the UUDIS

datasest. The first version provides information on drug-level shortages (shortages defined at the

molecule-form level). The second version provides information on labeler-drug level shortages and

27“NDC” stands for “National Drug Code”, a unique numeric drug identifier at the labeler-product-dosage form level.
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allows to determine which firms made default.28 A main limitation is that these data do not quantify

the missing product quantities when a shortage occurs.

The second block builds a plant-level dataset that captures the production structure of U.S.-

marketed drugs. I first leverage confidential data obtained from the FDA’s Center for Drug Evaluation

and Research (CDER), which provide the geographical location of foreign and domestic drug manu-

facturing facilities over the period 2000 to 2022. The data contain the facility name and full address of

each registrant, and a unique Facility Establishment Identifier (FEI or DUNS). I complement the data

with records of the FDA’s inspections and warning letters data, leveraging text mining algorithms to

create data from text. Note that there are two limitations with these data. First, registering to market

a drug in the U.S. is not tied to actually producing the drug.29 Secondly, no information is available on

the products actually manufactured at the site. As a consequence, these datasets do not allow the FDA

to know exactly which facility makes which drug.30

The third and last block unifies the two first blocks by linking products to manufacturing firms

and labelers. Using detailed U.S. customs records from a proprietary source (Descartes Datamyne), I

use text analysis techniques to identify injectable drug names in detailed descriptions of U.S. import

shipments. For the purpose of matching drugs to plants, I then geo-locate addresses of each shippers’

address from the customs through automated queries to the Google Maps API. I do the same with

the CDER’s list of manufacturing plant and use probabilistic records linkage techniques to match

manufacturers to shippers based on names, addresses, longitudes and latitudes. These processes are

described in details in Appendix E.5 and F.2.

The final data is a balanced panel of 1,220 sterile injectable drugs (defined at the molecule-form

level) aggregated at the year-month-manufacturer level. After matching the U.S. Customs to the short-

age data and the FDA list of manufacturing facility locations, I obtain the quarterly list of all shipments

for which we find U.S. imports of sterile injectable drugs. I then match back the data to the shortage

dataset, so that for each sterile injectable drug, we get a full list of manufacturers, quantities of products

imported and indicators providing information about the status of shortages for all year-month dates

between January 2004 and December 2019.31

3. Reduced-Form Evidence: Offshoring and Shortages

I use this comprehensive dataset to provide new empirical evidence on (i) the offshoring of drug manu-

facturing facilities and (ii) the correlations between foreign-made products and an increase likelihood of

shortage spells. While the empirical findings described in Subsection 3.1 may not individually provide

28This information was stored as thousands of text Documents, which I digitized using automatic text processing and text
analysis techniques to extract data from text. Details and an overview of these documents can be found in Appendix F.2.

29The FDA found that among all approved generic drugs in 2019, only 39 percent were observed to be marketed.
30This was confirmed through a discussion call with FDA economists from the Drug Shortage Team in 2020
31I do not see hospitals (or GPOs) direct purchases. On the demand side, I only have data at the labeler-molecule dosage

form product-quarter level for the entire U.S. market, through Medicare Part B and Red Book Prices. Prices I use are thus
average prices over all U.S. hospitals for a given drug product
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enough evidence to establish a causal link between recent spikes in drug shortages and the offshoring

of production plants, they form a constellation of evidence that suggests both phenomena are linked.

To address the potential selection of drug products and manufacturing firms into offshoring, as well

as the endogeneity of offshoring decisions, I then employ in Subsection 3.2 an instrumental strategy.

This strategy is based on the concept of the home market effect (Krugman, 1980), which allows for the

identification of exogenous variations in offshoring rates across different locations and products.

3.1. Stylized Facts on Offshoring

This section defines offshoring before documenting three stylized facts linking offshoring to shortages.

Definition of Offshoring. I define offshoring as an upward shift in the aggregate share of a
molecule-form drug being produced outside of the U.S. I remain agnostic about the structure of ownership.

“Offshoring” could either be that (i) a U.S. labeler (generic sponsor) originally producing through U.S.-

based plants decides to move production abroad (same labeler “ownership”), or (ii) a drug originally

produced by a U.S.-owned and based firm is now produced by a foreign-based and foreign-owned firm

(different labeler “ownership”). In both cases, manufacturing plants themselves can either be owned

by the labeler company or outsourced to Contract Manufacturing Organizations (CMO). My anal-

ysis hence focuses on actual production locations to define whether a drug is fully or partially offshored.

Fact 1: Foreign imports drop during shortages. In Figure 4a, I report quarterly variations in the

average number of foreign manufacturers of a drug around the occurrence of a shortage. The start of a

U.S. shortage event corresponds to a sharp drop in the number of foreign manufacturers found in the

import customs.32 This plot serves two validation purposes. First, it validates the linkage of drugs to

foreign plants, as a drug’s import patterns match its disruption patterns. Second, it shows that foreign-

based manufacturers experience shortages. A manufacturer affected by supply disruptions should stop

or dramatically decrease exports to the U.S. and would, as a result, mechanically not appear in the

customs records at the time of disruption.33

The following two facts are based on the comprehensive matching of drugs to their registered
plants.34 Compared to the first fact, this matching ensures that the presence of firms in the data is

not affected by the occurrence of shortages: for each year, I capture the exact set of firms registered to

manufacture injectable drugs for the U.S. market.

Fact 2: Injectable drugs experiencing shortages are more offshored than sterile injectables that do

not. In Figure 4b I look at yearly variations in the share of foreign manufacturers for injectable drugs

that went into shortage at least once over the 2002-2019 period and compare it to injectable drugs that

32Appendix figure B7 further shows that the 2011-2012 peak of U.S. shortages corresponds to a sharp drop in the number
of foreign manufacturers found in the U.S. imports data.

33The first fact is based on the simple matching of two datasets: the drug shortage dataset and drug shipments from the
U.S. custom records. Though it allows to link drug products to their foreign manufacturers, it does not capture the list of
plants actually registered to market a drug in a given year, as manufacturers disappear from the data during shortage spells.

34It adds to the previous data of drug products and shipments a second matching between the U.S. customs and the FDA’s
dataset of manufacturing plant locations. This matching was made using probabilistic record linkages, both exploiting firms’
names and their geo-located addresses in the U.S. Customs and in the FDA data.
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(a) Foreign importers drop during shortages (b) Injectables short are more offshored

Figure 4: Correlations between Offshoring and Injectable Shortages

Notes: Figure 4a plots quarterly variations in the average number of foreign manufacturers for a drug around the occurrence of a shortage.
For each drug, I first compute the average number of manufacturers found in the U.S. customs data by quarter (customs data are granular
at the daily level). The average is then computed over all drugs at the quarterly level. A shortage event corresponds to a sharp drop in the
number of foreign manufacturers found in the U.S. Customs at the exact time of the shortage. Figure 4b shows that injectable drugs going
short display higher shares of foreign-based manufacturers than sterile injectables that do not. Leveraging a balanced panel of generic sterile
injectable drugs, the share of foreign producers of drugs that go short go from 23% in 2004 to 67% in 2019. Generic injectable drugs that do
not go short go from 4.3% of foreign manufacturers to 33% at their peak in 2017.

did not go short. Sterile injectable drugs experiencing shortages display higher shares of foreign-

based manufacturers compared to sterile injectables that never went into shortages, and this share also

increases more over time: from 23% to 67% for drugs short, against 5% to 28% for non-short drugs.

Imported drugs also face longer and more frequent shortage spells compared to non-imported drugs,

as displayed in Appendix Figures B8). Imported drugs face an average of 3.8 shortages and 379 days of

shortages over the 2002-2019 period, while non-imported drugs face an average of 2.1 shortages and 232

days of shortages. In Appendix Figure B5, I present an analysis of Indian export customs data, which

further reveals that injectable drugs that have been in short supply over the last 15 years constitute the

bulk of injectable drug exported by Indian companies.

Fact 3 (Event Study): Post-offshoring, injectable drugs are more likely to experience shortages than

similar drugs whose production remained in the U.S. To mitigate concerns about endogeneity and se-

lection of offshored products, I implement a matched dynamic difference-in-differences (DID) design

to estimate the impact of transitioning from domestic to offshored production on drug shortages. I

match sterile injectable drugs that were offshored with similar drugs that were not, based on similar-

ities in route of administration, therapeutic categories, number of manufacturers, drug ages, and unit

prices. This matching employs a Coarsened Exact Matching (CEM) algorithm and controls for selection

on observables, while the DID design addresses potential concerns about selection on unobservables.

Appendix Section B.6 provides a detailed description of the matching process and the definitions of the

treatment, control groups, and offshoring events.

Table B8 displays the DID regression results, while Figures 5 illustrate the event-study version of
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Figure 5: DiD Event Studies : Effect of Offshoring on Shortage Spells

Notes: These figures plot the βk coefficients of specification 19, using as dependent variable either an indicator equal to one if a shortage
occurs (left panels) or the length of shortage events, measured in days as the difference between the first reported date of a shortage and the
date at which it was officially resolved (right panels). The left panel regresses the probability of shortage on offshoring and plots the average
differential shortage outcome of treated units. The right panel performs the same regression using shortage length in days as a dependent
variable. The purple line represents the baseline analysis in which a control group is defined as drugs that were never offshored. The dark
and light green lines reproduce this plot for alternative definition of a control group (drugs with less than 10 or 20% of offshored production).

the analysis. All post-treatment coefficients are positive and significantly correlated with shortages.

Offshored drugs are, on average, 12% more likely to experience shortages compared to similar drugs

whose production remained in the U.S. There is also a 6% greater chance of a new shortage being

reported immediately after offshoring for these drugs, relative to their counterparts. Finally, offshored

drugs undergo shortages that are, on average, 125 days longer than similar non-offshored drugs. The

results are robust to alternative definitions of control groups, as shown by the green lines in Figure 5.

3.2. A Shift-Share Instrumental Variable Strategy for Offshoring

The decision of a manufacturing firm to offshore production is endogenous, and there is also selection

on the type of drugs and firms that will decide to locate in the global South. In order to strengthen the

evidence for a causal interpretation, I develop in this section a shift-share instrumental variable for the

offshoring of sterile injectable drugs.

Instrumental Variable Strategy The instrument builds on the idea that an exogenous increase in

market demand for a drug in a country increases the probability that a manufacturer locates a pro-

duction facility for that drug in that country, because increasing returns and trade costs imply that

firms want to concentrate production close to large markets. This is a classical “Home Market Ef-

fect” story (Krugman, 1980). Over the past two decades, the global medicine consumption pattern has

shifted, largely driven by a boom in the consumption of healthcare and generic drugs in “Pharmerg-

ing” giants such as Brazil, Mexico, India, and China.35 As the world’s consumption of drugs shifts,

35See Appendix B5. IQVIA estimates that the accelerating shift in global spending toward generics, rising from 20% in
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production re-allocates to get closer to this new booming market.36

The instrument requires to isolate some plausibly exogenous source of variations in offshoring

rates at the drug product-year-geographical location level. To obtain such variation, I use the idea that

the demand for pharmaceutical treatments varies across demographic groups based on the incidence

of disease (e.g., some drugs are disproportionately used by men from 25-45). Therefore, changes in

demographic composition over time and across countries (the “shifter”) interacted with the propensity

for a demographic group to use a drug (the “share”) provide exogenous variations in demand.

Predicted disease burden The instrument takes the form of a predicted disease burden measure,

which captures the average country-level disease burden that would be expected given a country’s

demographic structure.37 Equation (1) captures the construction of the index.

(PDB)d
it = ∑

a,g

[
InsuredPop iagt ×

(
∑k ̸=i disease burden d

kagt

∑k ̸=i population kagt

)]
(1)

The last ratio term measures the average disease burden per capita from disease d for gender g
and age group a, calculated excluding the country of interest (that is, summing over all countries k
except for country i).38 This ratio is then weighted by the share of population for that gender g and

age group a, and summed across age and gender groups, for a given country i in year t. Because the

rise in consumption of drug products in the South is in part driven by the rapid access of wealthier

populations to health insurance, I weight these populations by the share of people insured by country

in each year, using data from the World Health Organization. This provides additional variation at the

country-year level. The PDB index eventually varies at the country-disease-year level and leverages

cross-country and cross-time variations in demographic structures and healthcare access.39 Appendix

B.5 provides additional details on the data used to built predicted disease burden measures.

IV Regression Results. Table 1 displays the results of a regression of shortage probability on

offshoring, in which I instrument for offshoring of drug facilities with the constructed predicted disease

burden measure. These regressions are based on a linear probability model where the dependent

variable, Shortagejt, takes the form of a dummy equals to one if drug j is in shortage at time t:

Shortagejt = αj + δt + βOffshoringjt + ϕp log
(

pAWP
jt

)
+ ϕM Mjt + ϕP1{PatentStatusjt}+ νjt

where the first-stage is

Offshoringjt = aj + dt + β∆log(PDBmt) + φp log
(

pAWP
jt

)
+ φM Mjt + φP1{PatentStatusjt}+ ωjt

2005 to 39% of spending in 2015, was mostly driven by an increase of consumption from these four countries
36Incidentally, the main categories of drugs in shortage in the United States are those that faced the greatest increase in

consumption in South-Asia: generic drugs, drugs used in hospitals (contrary to OTC medications, which tend to be more
expensive), and primarily oncology drugs and antibiotics.

37This idea was first introduced by Acemoglu and Linn (2004) and exploited more recently by Costinot et al. (2019).
38Note that the fact that firms from country i are better at treating a given disease d may cause a lower burden for that

disease in country i. Leaving out country i from the average disease burden per capita addresses this endogeneity issue.
39Figure B10 additionally shows that the constructed predicted disease burden measures display significant variations over

time and geographical regions.
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Offshoringjt captures the share of drug j produced outside of the U.S. at time t. ln(pAWP
jt ) is the log-

median AWP unit price (in 2010 dollars), Mjt measures the number of manufacturers for drug j at t
(a measure of market concentration on the supplier side) and 1{PatentStatusjt} is an indicator variable

equal to one if the drug lost its patent status. All regressions include year and drug fixed effects.

All else equal, an increase in the share of foreign producers for a drug is strongly correlated with

an increase in the probability that a shortage occurs and in the fraction of time during which a drug is

in shortage, in a given year. For every 100% increase in the share of foreign manufacturers for a given

drug, we see a 31 percentage point increase in the likelihood of a new drug shortage, all else being

equal. This goes up to 54 percentage points for a 100% increase in the share of Asian manufacturers.

Similarly, a 100% increase in the share of foreign production of a drug is associated with a 36.5%

percentage point increase in the length of the shortage events (61% for offshoring to Asia only). Similar

regressions without controls (see Appendix Table B7) or using alternative measures of the predicted

disease burden based on India and China only, provide coefficients of similar magnitude.

Table 1: Probability of shortage on share foreign - Instrument: log(PDB)

Dependent Variable: P(New Shortage=1) Shortage Days

Second-Stage†

Facilities, Share Foreign 0.3129∗∗ 0.3651∗∗

[.1152] [.1447]

Facilities, Share Asia 0.5415∗∗ 0.6064∗∗∗

[.2721] [0.1873]

Log Median Unit Price -0.00116 0.00437 -0.00617∗ -0.00379
[0.00529] [0.00517] [0.00357] [0.00367]

Number Manufacturers 0.01184∗∗ 0.01689∗∗∗ 0.00513 0.00918∗∗

[0.0059] [0.0056] [0.00378] [0.00377]

Off patent dummy 0.01519 -0.03058 0.00447 -0.0388
[0.03379] [0.0425] [0.02206] [0.02918]

First-Stage
∆ log(PDB) 0.3∗∗∗ [0.109] 0.2254∗∗∗ [0.07342] 0.3∗∗∗ [0.109] 0.2254∗∗∗ [0.07342]

Year Fixed Effects ✓ ✓ ✓ ✓

Drug Fixed Effects ✓ ✓ ✓ ✓

Std.Dev. 13.44 18.72 9.038 12.88
F-stat First-Stage‡ 36.44 34.4 36.44 34.4
Standardized Beta Coefficient 0.4874 [0.3352] 0.8354∗∗ [0.3544] 0.9349∗∗ [0.3706] 1.512∗∗∗ [.4009]
OLS Coefficient 0.00322 [0.01475] 0.06109∗∗∗ -0.00389 [0.01013] 0.04124∗∗∗ [0.01201]
Observations 16576 16576 16576 16576

Notes: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Bootstrap SE in parenthesis. †Instrument: log predicted disease burden. F statistics are statistically
significant following the “tF” test procedure of Lee et al. (2022) for weak IVs. Table B7 displays the regressions without controls.

3.3. Summary of Empirical Findings

This section presented novel empirical evidence linking foreign manufacturers to drug shortage spells.

First, a shortage in the U.S. coincides with a drop in imports of the affected drug products. Second,
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injectable drugs are more likely to suffer from shortages if their manufacturers are located overseas,

and these shortages are longer and more frequent. Third, the likelihood and length of shortage spells

increase post-offshoring. Using exogenous variations in predicted disease burden measures, I find that

manufacturers are disproportionately likely to offshore manufacturing to Asia for drugs that are in

increasing demand in those developing countries as their populations age. These drugs are in turn the

most likely to be reported in shortage in the U.S.

This constellation of evidence suggests we should reject the null hypothesis of no relationship

between shortages and offshoring. However, these evidence neither permit to ascertain the severity of

shortages, nor to quantify the magnitude of disruption responses to offshoring. The model allows to

quantify such market responses and to evaluate counterfactual scenarios.

4. A Model of Shortage in Global Procurement Markets

This section proposes a structural model of manufacturers’ location and production choices in global

procurement markets that endogenizes shortage occurrence. The partial-equilibrium model draws on

the previously described market features and empirical evidence, and serves several purposes. First,

it generates insights into the incentive dynamics of supply disruptions and helps rationalize the off-

shoring correlations observed in the data. Second, it provides a framework to analyze the manufactur-

ers’ response to the moral hazard incentives created by the offshoring option, and allows to quantify

buyers and sellers’ behavior in terms of economic parameters, such as the weight buyers and sellers

place on future disruption outcomes in their decision-making processes.

4.1. Model Summary and Timing

In order to capture what motivates manufacturers to let supply periodically fail, the model matches key

characteristics of the injectable drug market. It features international procurement contracts between

U.S. buyers (GPOs, see Appendix A.2.1 for institutional details) and a diversified group of suppliers

(pharmaceutical manufacturers). These suppliers’ investments in production plants (facilities mainte-

nance and upgrades) are not fully observable by the regulator (the FDA) and are subject to periodic

regulatory inspections to monitor production quality. Buyers leverage competitive bidding to allo-

cate market shares to suppliers through year-long procurement contracts, establishing some short-term

market inflexibility, as prices and capacities are predetermined before any disruptions materialize.

Featuring moral hazard and a stochastic production process, along with buyers’ price sensitivity

and a potential taste for supply reliability, the model underscores that while disruptions arise from

exogenous random supply shocks, the likelihood of ensuing stock-out events can be strategically

managed by firms through the creation of capacity buffer or by opting for less disruption-prone

production locations. Opting for greater production capacities or establishing plants in more regulated

markets minimizes the risk of disruptions escalating into conditions of excess demand, but incurs

higher costs for suppliers (e.g. cost of facility upgrades or quality checks), and eventually, buyers.

Thus, the model endogenously generates market equilibria characterized by supply shortages - defined
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Model Summary: Timing

Manufacturer j obtained
a marketing authorization
(ANDA/NDA) to enter
molecule market m

STEP 1

Manufacturer j chooses plant
location l = {H, FN, FS}

Pre-auction

Downstream buyer starts a tendering process
to procure QD

mt (p,X) for molecule market m.

Asymmetric info on competitors’ costs

STEP 2

Manufacturer j chooses price pjt and produc-
tion quantity qjt to max expected profit

Buyer decides how much to buy
from each supplier j, QD

jmt (p,X)

Post-auction

Supply shock realizes

qjtll(j)t survives the
shock, with ll(j)t 2 [0, 1]

Inspection occurs
with frequency il

2 / 2

Figure 6: Model Timing

Notes: A downstream buyer (GPO) located in a single location (Home) starts a tendering process to procure quantity QD
mt(.) of a given

molecule-form product m at time t. Molecule markets m are oligopolistic and contestable, and a set of Jmt upstream drug manufacturers
enter each period in order to obtain procurement contracts. Each manufacturer j’s problem is decomposed into two steps. In a first step, each
manufacturer makes ex-ante location choices for their unique plant. In a second step, they choose production quantities qjmt and unit prices
pjmt to maximize their expected profit. While drugs are considered homogeneous at the molecule level, there is observable heterogeneity at the
manufacturer level: buyers assign market shares based on manufacturers’ proposed prices and observable characteristics. After contracts
are assigned, a location-dependent exogenous random supply shock ωl(j)t realizes and may reduce supply delivered relative to chosen
production levels. Manufacturers have two available margins to insure against future expected supply shock: first, building capacity buffers;
second, choosing production locations with low-disruption risks.

as conditions of excess demand at the product level.

This tractable model can be brought to a variety of data and extended to other industries affected

by supply disruptions, enabling researchers and policymakers to better quantify the complex trade-offs

between offshoring, cost savings, and supply chain resilience. In particular, this model of manufacturer

locations and production choices in global procurement markets may accommodate many different

demand systems – as long as one has data on prices, observed quantities sold, and indicators for

manufacturer-level disruptions.

4.2. A Discrete Choice Logit Model of Buyers’ Demand for Drugs

Setup A sterile injectable drug market m is defined at the molecule-form level (e.g. injectable morphine)

and time t (a fiscal quarter). A downstream buyer (GPO) located in a single location (Home) starts a

tendering process to procure quantity QD
mt(.) of a given molecule-form product m. Each buyer is

assumed to be a monopsonist for its set of patients (Dafny, 2005).

Entry and Contestability. Molecule markets m are oligopolistic, and a set of Jmt upstream drug

manufacturers compute each period in a contestable market (Tirole, 1988; Chaudhuri, 1996) in order to

obtain procurement contracts for a single, homogenous drug product. As Dubois and Lasio (2018), I

take entry decisions as exogenous and do not explicitly model the dynamics of entry and exit across

markets. Entry decisions took place at the time firms applied for a marketing license (ANDA for

23



generics), so that sunk fixed entry and certification costs are only paid once, prior to the start of the

game.40 In this contestable market, conditional on holding a marketing patent, the additional cost for

a firm to participate in a procurement auction is closed to zero. Any firm holding a sale license for

product market m can enter an auction on a short notice.

Heterogeneity. Buyers choose among Jm + 1 differentiated products where j = 0, ..., Jmt and good

0 denotes the outside good (no purchase), and contract quantities QD
jmt with each supplier j such that

QD
mt = ∑Jmt

j QD
jmt. Manufacturer j set regular capacities to be at least QD

jmt (see Proof in Appendix

C.3). Buyers assign market shares based on players’ proposed prices and observable characteristics.

While drugs are considered homogeneous at the molecule level,41 there is observable heterogeneity at

the manufacturer level: buyers assign market shares based on manufacturers’ proposed prices and

observable characteristics (brand versus generics, labeler size, or firm’s reputation as measured by

their average past number of stock-out events).

Logit Demand For a given molecule market m, patient i’s indirect utility from buying a drug

product from supplier j in fiscal quarter t is given by a fixed-coefficient discrete choice logit model:

vijmt = Xjmtβ − αpjmt + λgjm + ϕm + ϕt + ϵijmt ∀j and vi0mt = 0

where I normalize the utility vi0mt for the outside good to zero. Drug characteristics are captured by (i)

pjmt, the endogenous manufacturer j’s price in market m at time t, (ii) gjm, a binary variable indicating

whether drug j is generic or brand and (iii) Xjmt, which captures an exogenous reliability score varying

at the manufacturer-molecule form- fiscal quarter level. ϕm and ϕt are molecule and time fixed effects,

respectively, controlling for unobservable factors that vary either across molecule markets or over fiscal

quarters (but are constant within a market or within a quarter). ϵijmt is an idiosyncratic error term.

Buyers disutility from higher prices is captured by the coefficient α, while taste for a supplier’s

”reliability” is captured by the coefficient β. I focus on purchases made in the hospital sector, and

hospitals typically fully internalizing the prices of drugs that they purchase on behalf of patients.42 I

follow Dubois and Lasio (2018) by assuming that demand is static; hence, I am not allowing for con-

sumer learning. Although learning may be important due to the uncertainty over suppliers’ reliability

in this market over the considered period, the lack of transparency over supply chain links means

that buyers actually have little ability to learn from previous contractual relationships with sellers.43

40ANDAs do not have expiration dates. Once a generic manufacturer receives an approval for a generic drug through
the ANDA process, they can continue to produce and market that drug without seeking its renewal. However, there are
requirements to maintain the accuracy of the ANDA information.

41All drugs having obtained a marketing authorization from the FDA are bioequivalent (Hatch-Waxman Act of 1984.)
42Similarly to Dubois and Lasio (2018), I cannot observe data on the behavior of insurers, healthcare providers, and

other intermediaries between patients and drug manufacturers, and hence I abstract away from modeling them and do not
disentangle their role in aggregate revealed preferences.

43GPOs themselves have no good vision of shortage history; first, because generic markets are highly contestable, such
that firms enter and exit the market constantly. Second, because drug manufacturers generally sell one product variety
through one GPO at a time, and may have previously sold this product through a competitor GPO - in which case, buyer
i ignores the past relationship between this supplier and their competitors. Third, because drug supply chains are long,
globalized, fragmented and labelers are not required to disclose the identity and location of their plants. As an example,
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Hence, buyers imperfectly observe a supplier’s reliability and I assume that the reliability score Xjmt

is an exogenous measure, which in practice, could be attributed by the FDA.44 I build this reliability

score measure based on a supplier’s history of shortages, using as an index the fraction of time in the

previous year during which the manufacturer was not short (so that higher scores correspond to higher

reliability levels).

Following the logit assumption on the extreme-value type I distribution of the error term ϵijmt,

there is a direct mapping from indirect utility to model-predicted market shares for each manufacturer.

The market share of manufacturer j in market m and quarter t is:

sjmt =
exp

{
Xjmtβ − αpjmt + λgjm + ϕm + ϕt

}
1 + ∑

jmt
k=1 exp {xktβ − αpkt + λgkm + ϕm + ϕt}

(2)

Demanded quantities (quantities contracted as a result of the procurement auction process) can be ob-

tained by multiplying logit market shares by market size Mmt:

QD
jmt(pj, Xj, p−j, X−j) ≡ QD

jmt(p, X) = Mmt · sjmt

where Mmt − ∑Jm
j=1 Qjmt = Q0mt is the size of the outside option and Mjmt is the number of prescriptions

for manufacturer j in molecule-market m. Each manufacturer j’s contracted quantity depends on prices

and characteristics of all other manufacturing firms competing in the market.

4.3. Uncertainty and Shortages

The economy is subject to locations-dependent exogenous random supply shocks, which realize af-

ter contracts are assigned to firms (and thus, after manufacturers’ pricing and supply decisions are

made).45 The randomness in supply can give rise to firm-level shortages, where supply of firm j falls

short of demand. A shock reduces capacity at facility j from qjmt to qjmtωl(j)t with ωl(j)t ∈ [0, 1]. ωl(j)t

is a random variable that captures the share of firm j’s supply that survives the exogenous shock and

can be utilized to fulfill demand - a “capacity yield”.46

Definition 4.1 (Firm-level Shortages). The probability that firm j goes short in a given fiscal quarter t and

Vizient, a leading GPO, started to contract in 2021 with the UUDIS in order to access information on shortages history and
get warnings when shortages are about to start. The FDA recently advised GPOs to ask about the exact identity and location
of their suppliers when drafting contracts, but there is no legislation enforcing this practice and the U.S. regulator still does
not have the authority to intervene in procurement contracts.

44Note that reputation does not matter by itself in the model; it only matters in that it may predict future disruptions. If
the buyer believes that the yearly accreditation delivered by the FDA is sufficient measure of reliability, then additional signal
from the sellers on product quality is unnecessary. See discussion in Section C.4.

45Following current market practices, contracted prices and quantities are assumed to be fixed during the length of the
contract (one to two years). Prices are renegotiated over time when contracts expire or when the buyer meets new sellers.

46An assumption widely used in the Operation Management Literature; see for instance Tang and Kouvelis (2011)
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molecule market m is defined as the probability of positive excess demand for firm j:

Pr(shortage)jmt ≡ Pr

(
qjmtωl(j)t︸ ︷︷ ︸

Realized Supply

< QD
jmt(p, X)︸ ︷︷ ︸
Demand

)

= Pr

(
ωl(j)t <

QD
jmt(p, X)

qjmt

)
= F

(
QD

jmt(p, X)

qjmt

)
(3)

where ωl(j)t is the realization of an exogenous supply shock with cumulative distribution function F(µωl , σωl ).

The realization of shortage spells in the economy affects the supply quantity effectively observed
by the econometrician. In equilibrium, absent of shortages, the observed quantities sold are equal

to demanded quantities. During shortage periods, the realized quantities sold fall below demanded

quantity levels, so that observed market shares are no longer equal to the traditional logit shares.

Defining an indicator equal to 1 during shortage periods and 0 otherwise, Shortjmt ≡ 1{qjmtωl(j)t <

QD
jmt(p, X)}, the observed quantities supplied by manufacturer j become

qobserved
jmt = min{QD

jmt(p, X), qjmtωl(j)t}

= QD
jmt(p, X)− Shortjmt

QD
jmt(p, X)− qjmtωl(j)t︸ ︷︷ ︸

Excess demand

 (4)

where QD
jmt(p, X)− qjmtωl(j)t is positive in situations of excess demand and negative for excess surplus.

4.4. The Manufacturer’s Profit Maximization Problem: Supply of Drugs

I decompose the static problem of a drug manufacturer j into two sequential steps. In a first step,

manufacturer j chooses the location of their unique plant. In a second step, all manufacturers compete

in an oligopolistic and contestable molecule market m, by simultaneously choosing production

quantities qjmt and bid prices pjmt to maximize expected profits.47 I focus on suppliers’ location, pricing

and capacity decisions within an exogenously given market structure (see Section 4.2). I assume all

firms holding a sale license at the time procurement starts enter the auction. Firms already active in

the market then decide first where to open their plant, second which supply capacity and bid price to

announce in the auction, both of which can be close to zero.

Suppliers’ location and supply capacity decisions directly endogenize the realization of shortages.

While manufacturer j has no control over the realization of exogenous shocks (natural disasters, trade

shocks, or contamination may occur independently on facility investments), they can choose the proba-
bility that a shortage occurs (i.e. that demand goes unfilled). Manufacturers have two available margins

to insure against shortage risks: first, they can build capacity buffers by producing above the initially

contracted quantity levels; second, they can choose production locations with low-disruption risks. This

47A bertrand oligopoly with increasing returns to scale where firms simultaneously decide on their prices and outputs
yields the contestable outcome in equilibrium (Chaudhuri, 1996).
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last margin is equivalent to choosing a less risky draw of ωl(j)t). Both assurance margins may however

come at the price of higher marginal and fixed production costs. The pivotal manufacturer’s trade-off

between supply reliability and cost-cutting thus appears in both steps of the firm’s problem: in step 2,

the manufacturer trades-off price levels versus surplus quantities; in step 1, they trade-off disruption

risk versus location-specific production costs.

The model is solved by backward induction; first computing the equilibrium prices and quantities

conditional on a location, then choosing the location that brings the highest expected level of profits.

4.4.1. Step 1: Location Choice

Each manufacturer trades-off three location-specific factors: the distribution of supply shocks, marginal

costs and fixed costs. In order to capture key features of the observed data, I focus on three groups

of locations: “Home” (U.S.-based plants), “Foreign, North” (corresponding to OECD countries in the

data) and “Foreign, South” (corresponding to Asia, mostly India and China). In what follows, I denote

these locations as {Home, Foreign North, Foreign South} ≡ {H, FN , FS}.

Manufacturer j chooses the location l in which to produce in order to maximize expected profits net

of fixed investment costs:

l∗ = arg max
{πl

jmt,FCl
jmt}

E
[
πl

jmt

(
ωl(j)t, cl

jmt; q∗jmt, p∗jmt

)
− FCl

jmt

]
(Eq. Location)

Choosing a location first boils down to choosing the distribution of the exogenous supply shock one

wants to draw a ωl(j)t (capacity yield) from. Choosing a location also boils down to choosing marginal

cost levels and the distribution of fixed costs to draw from. Production displays increasing returns

to scale. Fixed-costs are assumed to follow a location-specific log-normal distribution ln(FCl
jmt) ∼

N(µFCl , σ2
FCl

) with firm-level logit shocks. Firm j’s marginal cost is parametrized as

cl
jmt =

wltτlt

γl(j)t(φl)
(5)

, where wlt is location-specific wage in the pharmaceutical manufacturing sector, γl(j)t is a firm-specific

idiosyncratic productivity shock, τlt is an iceberg trade cost between manufacturing location l and the

destination market (the U.S.) and φl is inspection frequency in location l over the previous periods,

with φFS < φFN < φH.

Conditional on a location, the firm knows its own costs but only knows the distribution of its

competitors’ costs. Asymmetric information on competitors’ costs mean that each manufacturing firm

has positive profit in expectation. The log-normal distribution of fixed costs means that the realized

per-period profit of each firms may be negative. Firms experiencing negative profits in the short-run

may still be willing to produce in a given procurement period if they anticipate positive profits in the

longer-term.48. Even though realized per-period profits may be negative (for instance due to shortages),

it may be compensated over periods if firms expect positive profits during non-shortage times.

48The contestability of the market favors concentration so that new generic entrants may expect achieving greater scale in
the long-run, and the fixed costs of paying for a drug patent (ANDA) can be amortized over an extended period
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4.4.2. Step 2: Choice of Production and Prices

Given location l, manufacturer j operating in market m at a given time t, chooses (simultaneously with

competitors) optimal output levels q∗jmt and unit price p∗jmt in order to maximize ex-ante expected profit,
conditional on expectations over future supply shocks. Taking as given the production and pricing

decisions of their competitors, firm j’s profit maximization problem can then be written as a weighted

average of expected profits in disrupted and undisrupted times. Within each market m:

max
qjt,pjt

Eωl

[
πl

jt(pjt, qjt; QD
jt (.), cl

jt, FCl
jt)
]
=

[
1 − F

(
QD

jt (p, X)

qjt

)]
︸ ︷︷ ︸

Pr(no excess demand)

pjtQD
jt (p, X)︸ ︷︷ ︸

E(Revenue | no excess)

+ (Eq. Profit)

F

(
QD

jt (p, X)

qjt

)
︸ ︷︷ ︸
Pr(excess demand)

pjtqjtE

[
ωl(j)t | ωl(j)t <

QD
jt (p, X)

qjt

]
︸ ︷︷ ︸

E(Revenue | excess demand)

−
(

cl
jtqjt + FCl

jt

)
︸ ︷︷ ︸

Total Production Cost

where the probability of shortage F
(

QD
jmt(p,X)

qjmt

)
can be directly written as a function the cumulative

distribution function F(.) of the exogenous supply shock (see Definition 4.1).

This probability captures the fraction of time, during a given fiscal quarter t, during which firm

j’s expects to supply below demanded quantities. In absence of shortages, firm j’s revenue simply

corresponds to the product of unit prices pjmt and demanded quantities QD
jmt(p, X). Under situations

of excess demand, firm j’s expected revenue corresponds to the product of unit prices and the ex-

pected realized supply. This depends on the initially chosen production quantities qjmt and on the

conditional expectation over location-specific capacity yield ωl(j)t when a shortage is realized (positive

excess demand).

Production displays increasing return to scale, as the total production costs of firm j are equal

to cl
jmtqjmt + FCl

jmt where FCl
jmt represents location-specific draws of fixed costs. Importantly, note

that whatever the scenario that realizes, the firm pays marginal costs cl
jmt that correspond to the

actual production choices made by the firm at the time contracts were negotiated. While the generic

injectable industry is well-known for practicing just-in-time production,49 I allow suppliers in the

model to “overproduce” in order to insure against future disruptions. Consistently with the high

storage costs of sterile injectable drug markets, I choose to abstract from storage and I do not explicitly

model suppliers’ choice of equilibrium inventory levels. Instead, I assume manufacturers insure

through costly production buffers and free disposal of production surplus. This assumption helps for

tractability while allowing to capture the key feature of interest: producing surplus is costly in these

low-margin markets, and manufacturers may want to minimize losses by reducing “inventories.”

A firm j’s conditional expectation over location-specific capacity yield ωl(j)t when a shortage is

49Drug manufacturers would allegedly not keep more than one to two weeks equivalent of stocks. Since the Covid-19
pandemic, the FDA has acted to support legislation that would enforce drug manufacturers to build at least three months
of stocks - a buffer that many health policymakers still judge insufficient given the average lengths and depths of shortage
events. As of October 2023, this legislation has not been enacted and remains at the state of “recommendations”
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realized can be re-written as:

E[ωl(j)t | shortagejmt] = E

[
ωl(j)t | ωl(j)t <

QD
jmt(p, X)

qjmt

]
=

1

F

(
QD

jmt(p, X)

qjmt

) ∫ QD
jmt(p,X)

qjmt

0
e f (e)de

where f (.) denotes the probability density function of the exogenous supply shock ωl(j)t.

Using this formulation, I can rewrite firm j′s ex-ante expected profit as:

Eωl πjmt(.) =pjmt

([
1 − F

(QD
jmt(p, X)

qjmt

)]
QD

jmt(p, X)︸ ︷︷ ︸
E[sales|no shortage]

+ qjmt

∫ QD
jmt(p,X)

qjmt

0
e f (e)de︸ ︷︷ ︸

E[sales|shortage]

)
− cl

jmtqjmt − FCl
jmt (6)

The structural form of the manufacturer’s problem emphasizes that while the occurrence of

disruptions is determined by exogenous random supply shocks, the probability of a subsequent

stock-out event can be targeted by the firm (by building more buffers or choosing less risky production

locations). While choosing to invest in higher levels of production capacities or building plants in more

regulated markets decreases the probability that a disruption turns into conditions of excess demand,

it comes at a higher cost for suppliers (e.g.: cost of facility upgrades or quality checks), and eventually

buyers.

Equilibrium prices and supply quantities are obtained from the first-order conditions of the firm’s

problem (See Appendix C.1 for details on the model derivations). From these first-order conditions, I

obtain the following relationships for equilibrium prices and quantities:

p∗jmt = cl
jmt

[ ∫ QD
jmt(p,X)

qjmt

0
e f (e)de

]−1

(Eq. Price)

−
(
1 + ηjjt

)︸ ︷︷ ︸
price elasticity


Pr(no excess demand)︷ ︸︸ ︷

1 − F

(
QD

jmt(p, X)

q∗jmt

)
contracted quantities︷ ︸︸ ︷

QD
jmt(p, X)

[ ∫ QD
jmt(p,X)

q∗jmt

0
ϵ f (ϵ)dϵ︸ ︷︷ ︸

expected share of surviving
supply in the event of a shortage

]−1

= q∗jmt (Eq. Supply)

where own-price elasticity ηjjt ≡ 1 − αp∗jmt
(
1 − sjmt

)
. sjmt is the logit market share of firm j in drug

market m.

I can rewrite this equilibrium function to get the classical price equals markup over marginal cost

form, adjusted by shortage-weighted equilibrium supply as:

p∗jmt = −
(

1
1 + η∗

jjt

)
cjlt︸ ︷︷ ︸

markup over mc

 q∗jmt

QD
jmt(p, X)

[
1 − F

(
QD

jmt(p,X)
q∗jmt

)]


︸ ︷︷ ︸
equilibrium supply adjusted by 1/Pr(no shortage)

(7)

29



where the markup here is variable and depends on firm size. Note that without the occurrence of

exogenous random supply shocks in the economy, we would retrieve the traditional markup over

marginal cost formula: the probability of shortage F
(QD

jmt(p,X)
q∗jmt

)
would be equal to zero, and the ratio of

supplied to demanded quantities
q∗jmt

QD
jmt(p,X) would be equal to one, thus cancelling the second part of the

right-hand-side formula.

4.5. Social Welfare

I derived a measure of consumer welfare directly from the discrete choice logit model of demand (An-

derson, Palma, and Thisse, 1992; Capps, Dranove, and Satterthwaite, 2003), using buyers’ expected

utility measure for each market m at time t, EUmt(·):

EUmt (pmt) = Mmt

∫
ln

[
1 +

Jm

∑
jmt

exp
(
vijt
)]

dF (ϵim)

= Mmt

∫
ln

[
1 +

Jm

∑
jmt

exp
(
Xjmtβ − αpjmst + λgjm + ϕm + ϕt

)]
dF (ϵim)

Consumer welfare is given in the model by the sum of the expected utility produced by each drug

available in market m, a measure of consumers’ surplus. Based on a discrete choice model of

demand for drug j that conditions on molecule markets and other observable (market size, number of

producers, i.e., suppliers competition, price), we can thus predict ex-ante buyer’s willingness-to-pay

(WTP) for a given drug product (similar to Capps, Dranove, and Satterthwaite (2003)).

4.6. Predictions of the Model

I illustrate in this section the model’s key dynamics by numerically simulating the model under a

simple example. In Table 2, I consider two level of marginal costs; a “low” cost corresponding to a

South production location, and a “high” cost, capturing production in the United States. Similarly, I

consider two exogenous supply shock levels: a “good” shock corresponds to a high average capacity

yield ωl(j)t (70% of supply survives the disruption) and a “bad” shock corresponds to a low average

capacity yield (70% of supply is destroyed by the shock).

For a given distribution of the shock (i.e. looking across columns for a given row in Table 2),

we reach higher unit prices, higher shortage probabilities and higher shares of demand unmet by

producing at Home than by offshoring to the South. The mechanisms are intuitive: lower marginal cost

levels in the South means manufacturers may achieve higher markups than their U.S. counterparts,

providing more incentives to build capacity buffers to assure against a shock. On the contrary, because

production surplus is costlier for U.S.-based plants, they are more likely to practice ”just-in-time”

production. Similarly, for a given level of costs (i.e. looking at row variations for a given column in

Table 2), worse shocks lead to higher levels of supply loss and hence higher market prices.
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Table 2: Model Predictions: 4 scenarios

clow = 5 (”Foreign, South”) chigh = 10 (”Home, North”)

p∗ Pr(Short) Share QD unmet E[π∗] p∗ Pr(Short) Share QD unmet E[π∗]

“Good” E[ω] = 0.7 25.52 0.34 -0.07 (surplus) 1440.05 26.32 0.75 0.3 840.69

“Bad” E[ω] = 0.3 26.78 1.0 0.67 345.66 32.98 0.9 0.75 27.29

The main takeaways from this numerical example is that, in order for the model to match the ob-

served patterns in the data (a higher frequency of shortages from Asian plants), we need to observe both
differences in marginal costs between the two locations and a different distribution of the supply shock.

Under such setting, it becomes optimal for drug manufacturers selling to the U.S. to operate from the

South and let supply periodically fail in return for lower cost of production, enabling some markup. In

the model, the exogenous shock captures supply reliability in a given location. While U.S.-based firms

may desire cutting on production costs further, they cannot afford to do so due to the stringent FDA

enforcement of “Good Manufacturing Practices” (GMP) within the U.S. borders. Offshoring becomes a

way for firms to target higher disruption probabilities than permissible in the U.S.50 The possibility to

offshore production prompts firms to choose foreign locations because the desired supply disruption

level is unattainable domestically at prevailing price levels (or similarly, because firms cannot dis-invest

enough in manufacturing process by reducing further domestic production costs). The main purpose

of the model estimation will then be to recover the distribution of the shock across locations.

5. Estimation of the Structural Model

In order to quantify the expected risk of disruption across locations and to capture the market trade-off

between cost-cutting and resilience, I estimate the structural model presented in the previous section.

I estimate twenty parameters separately, eighteen of which vary across production origin l, which I

cluster into three groups of locations: “Home” (U.S.-based plants), “Foreign, North” (corresponding to

OECD countries in the data) and “Foreign, South” (corresponding to Asia, mostly India and China). I

estimate these parameters following a four step procedure. Appendix Table D4 reports the full range

of estimated parameters.

In the first step, I quantify the price-sensitivity of demand and buyers’ taste for supply reliabil-

ity by estimating the demand parameters from the discrete choice logit model. These parameters can

be inferred directly from the data, using standard logit instruments to control for price endogeneity,

separately from the rest of the system. In a second step, conditional on the first-stage demand pa-

rameters, I recover the distribution of exogenous supply shocks across locations using a Generalized

50Domestic facility inspections are more frequent tin the U.S. than overseas (averaging every 2.5 years compared to once
every 14 years outside the U.S.), and penalties may be enforced more rigorously. Consequently, equipment quality and facility
upgrades typically meet higher standards domestically than in the South.
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Method of Moments (GMM) estimation procedure that matches observed shortage events with the

model-predicted probability of shortage. In the third step, I make parametric assumptions about the

form of marginal costs, trade costs and firms’ productivity shocks (TFP) and use model inversions

and a Simulated Method of Moments (SMM) approach to recover marginal costs, trade costs and the

location-specific parameters of the distribution of the productivity shock. In the fourth and last step, I

use the estimated parameters of demand, location-specific supply shocks and marginal costs to recover

the location-specific distribution of fixed costs, using the decision rules from the location choice part of

the model and a GMM approach.

5.1. Sample Definition

Markets are defined at the molecule-form m and fiscal quarter level t, for the period January 2002 to

December 2019. A unit of observation is a drug manufacturer (defined by a manufacturing plant),

molecule-form product, fiscal quarter. A molecule-form market m is defined by a level 5 Anatomi-

cal Therapeutic Chemical (ATC-5) class. Consumer preferences for each drug within a homogeneous

molecule market are defined according to a logit framework for differentiated products. Drug products

j are defined at the FDA’s National Drug Code (NDC) 5-4 level (which includes labeler in addition

to molecule-dosage-form, not taking into account commercial package size). For the purpose of es-

timation, I compute for each drug product j the average unit price over package size. I use WAC

prices (wholesale acquisition costs, the price paid by GPO to manufacturers to buy drug products).51

Sale quantities in a quarter are from Medicare Part B. More details about the characteristics of drug

markets, robustness to several definitions of markets, and summary statistics about the distribution of

price, shortages and sales across markets and locations are reported in Appendix D.1.

Table 3: Parameters to Estimate

Model’s step Parameter description Parameter Estimation method

Demand estimation Price parameter α Logit Model
Demand estimation “Reputation” parameter β Logit Model
Demand estimation Brand preference parameter λ Logit Model

Manufacturer’s profit maximization Distribution of supply shock
[
(µωl , σωl ) ; l = {H, FN , FS}

]
GMM

Price/Marginal Cost Inversion TFP distribution
[
(µγl , σγl ) ; l = {H, FN , FS}

]
SMM

Manufacturer’s location choice Fixed Cost parameters
[
(µFCl , σFCl ) ; l = {H, FN , FS}

]
GMM

Notes: l represents location, where “H” denotes “Home” (U.S.-based plants), FN denotes “Foreign, North” (corresponding to OECD countries
in the data) and FS “Foreign, South” (corresponding to Asia).

5.2. First-Stage: Estimating Demand Parameters and Elasticities

The realization of exogenous supply shocks in the economy introduces a censoring problem as the

observed market shares of firms operating in markets affected by shortages will be endogenously

51Note that this does not include rebates, for which there are no data. However, rebates are generally marginal for generic
markets, especially low-margin ones, compared to branded drug alternatives.
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affected by stock-out events. As a consequence, one cannot simply estimate demand parameters using

the traditional GMM logit procedure, which matches observed market shares to predicted logit shares.

I describe in this section the estimation procedure I use to overcome challenges related to situations of

excess demand in logit models.

Demand Specification. I can rewrite my fixed-coefficient logit specification (see Section 4.2) using

demanded quantities to have:

ln QD
jmt(p, X)− ln QD

0mt(p, X) = βXjmt − αpjmt + λgjm + ϕm + ϕt

where m denotes molecule-form markets, t denotes fiscal quarter, gjm are time-invariant molecule-

product specific characteristics (brand/generic dummy, drug-labeler-specific characteristics), Xjmt is

an exogenous reliability index measure (based on FDA’s shortage records at time t), and ϕm, ϕt are

molecule market and time fixed effects that control for any unobserved, market-specific or time-variant

factors. On the left-hand side, QD
jmt(p, X) are quantities sold of product j and QD

0mt(p, X) captures the

outside option of not consuming. Market size is given by Mmt = QD
0mt(p, X) + ∑Jm

j=1 QD
jmt(p, X).

As neither the outside option QD
0mt(p, X) nor market sizes Mmt are directly observed, and there is

no obvious definition of the potential molecule markets for sterile injectable drugs, I use the difference
across inside goods to identify demand parameters. Under my fixed coefficient logit specification, the

demand parameters α (price parameter), β (reliability parameter) and λ (brand preferences) are fixed

across molecule markets52 and I can use the functional form of the logit market share equations, without
having to assume the actual size of the outside option or market size, and thus without using market

shares. Differencing between two goods j and j′,53

ln QD
jmt(p, X)− ln QD

j′mt(p, X) = β
(
Xjmt − Xj′mt

)
− α

(
pjmt − pj′mt

)
+ λ(gjm − gj′m) (8)

where market and time fixed effects cancel out and I can identify α, β, λ, by two-stage least squares

with the usual instrumental variables to deal with price endogeneity. As quantities observed through

quarterly sales are only equal to demanded quantities for firms not experiencing shortages in a given

quarter t (there is no censoring issues for these firms, as qobserved
jmt = QD

jmt(p,X), see discussion below), I

can estimate this equation on markets where at least two manufacturing firms are not short.54

Conditions of Excess Demand and Censoring of Suppliers’ Market Shares. The realization of

exogenous random supply shocks introduce an endogeneity issue in observed market shares that goes

beyond the usual limitations of using observed shares as an empirical counterpart of logit-predicted

52I am not using a random coefficients logit mode and I can thus recover the true demand parameters by two-stage least
square as long as the number of observations is large enough. Fixed-coefficient logit is a reasonable assumption given all
molecule-form markets are for U.S.-sold sterile injectable drug products

53In practice, I carry the differentiation with respect to one firm within each market, so that one firm is consistently used
as the “outside option”.

54Note that without the unobserved logit heterogeneity term ξ jmt, there is no selection issue here. See Appendix Note D.6
for additional discussions about estimating unobserved heterogeneity in situations of excess demand.
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shares. Indeed, the observed drug quantities sold in the data are now directly affected by conditions of

excess demand, which introduces a censoring issue:

qobserved
jt =

{
QD

jt (p, X) when qjtωl(j)t ≥ QD
jj (p, X) [no excess demand, realized supply above demand]

qjtωl(j)t when qjtωl(j)t < QD
jt (p, X) [excess demand]

As a consequence, using observed firms’ market shares to estimate the coefficients of the logit model
will under-estimate the shares of firm shorts. Within a given drug market m, observed shares are:

sobserved
jmt =



qjmtωl(j)t

QD(.)
0t +

K

∑
k=1

qktωl(k)t︸ ︷︷ ︸
firm shorts

+
H

∑
h=1

QD
ht(p,X)︸ ︷︷ ︸

firms not short

=
qjmtωl(j)t

Mt
(i) if j short

QD
jmt(p,X)

QD(.)
0t +

K

∑
k=1

qktωl(k)t︸ ︷︷ ︸
firm shorts

+
H

∑
h=1

QD
ht(p,X)︸ ︷︷ ︸

firms not short

(ii) if j not short but k≥firms short

slogit
jmt ≡

QD
jmt(p, X)

Mt
(iii) if no firms short (standard logit )

where quantities for the outside option are

QD
0t(.) = Mt −

K

∑
k=1

qktωl(k)t︸ ︷︷ ︸
firm shorts

−
H

∑
h=1

QD
ht(p,X)︸ ︷︷ ︸

firms not short

= Mt − ∑
jmt

qobserved
jmt

Conditional on correctly capturing the size of the outside option, situations (ii) and (iii) reduce to the

traditional discrete choice logit market shares. Within a molecule-quarter market, I can use all firms not

short in order to estimate a standard logit model, independently of the shortage status of other firms

present in the market.55

Price Instruments. I use traditional cost-shifters to deal with the issue of endogeneity of price in

the logit model, namely parameters of marginal cost: location-year specific wage in the pharmaceutical

manufacturing sector and tariffs, and Ghandi-Houde (2019) instruments (price of products close in

the characteristics space, i.e. price of drugs belonging to the same ATC4 therapeutic category but not

same market (defined at the ATC5 or Molform level).56 I do not restrict the instrument to be region

specific (i.e. to belong to one of my three location groups, Home, Foreign South and Foreign North):

location-specific wages and tariffs vary at the country and year levels, which allows to exploit more

data variation.57

55Note that if on the contrary we only consider the inner market shares (without the outside option), then in case (ii) the
shares of firms not being short in markets where some firms are short will be over-estimated too. Under the scenario (i), the
logit-predicted market shares would always be under-estimated, independently of whether we consider inner or outer shares.

56Note that playing with different levels of therapeutic classes - i.e. using ATC3 or ATC2 level - do not seem to significantly
impact the regression coefficients

57Note that this does add computational complexity as I do not have any combinatorial problem: in my data, a manufac-
turing firm is defined as a plant and I do not assume pharmaceutical firms have to choose how many plants and locations
they want to operate.
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Market size approximation and outside good. As is usual in logit demand models, one does need

to take a stand on the potential market size in order to measure market shares. I use a nonlinear least

squares calibration procedure similar to Dubois and Lasio (2018) and Dubois, Gandhi, and Vasserman

(2022) in the IO of pharmaceutical markets literature to calibrate the potential quarterly market size

Mmt.58 This method relies on a two-step procedure. In a first stage, I use the estimates of α̂, β̂, λ̂

recovered using the differencing technique describe above. This allows me to compute logit-predicted

market shares for all firms, independently of their shortage status. In a second stage, for each molecule

market m, I estimate Mt that solves the following minimization problem:

min
Mmt≥∑Jm

j=1 QD
jmt(p,X)

T

∑
t=1

(
[α̂ (Mmt)− α̂]2 +

[
β̂ (Mmt)− β̂

]2
+
[
λ̂ (Mmt)− λ̂

]2
)

where α̂ (Mmt), β̂ (Mmt) and λ̂ (Mmt) are the two-stage least squares coefficient estimates of the

following equation, using the same instruments as before:

ln sjtm − ln

(
Mmt − ∑Jm

j=1 QD
jt (p, X)

Mmt

)
= βXjmt − αpjmt + λgjm + ϕm + ϕt

s.t. QD
jt (p, X)/Mmt = sjtm

where sjtm is manufacturer’s j predicted logit market share based on estimates α̂, β̂, λ̂.

This method estimates the market size as the solution to the maximization of the fit of the model

that does not specify the outside option, but uses instead market shares relative to one inside good.59

This method provides a good approximation of the market size, which avoids making more ad

hoc assumptions. In a market where total sales grow over time, it is indeed particularly difficult to

guess the potential market size, as one ignores whether it is stable over time or grows and at what rate.60

Based on the estimated demand parameters α, β and λ, I can then estimate for each firm, short or

not, demanded quantities in each molecule-quarter market, as Q̂D
jmt(p, X) = sjmt.Mmt. I can also recover

each firm’s own-price elasticity ηjjt = −αpjmt(1 − sjmt) and cross-price elasticities with another firm k
in the same market m: ηjkt = αpkmtskmt, where sjmt is firm j’s logit market share.

58On average, Dubois, Gandhi, and Vasserman (2022) find that the estimated outside market share across ATC4 categories
was 27.9% in Canada and 22.8% in the US. The original procedure is from Huang and Rojas (2014).

59The generally accepted procedure is to assume a “market potential” that implicitly defines the size of the outside good;
in practice, this means that an endogenous quantity is approximated by a reasonable guess thereby introducing the possibility
of an additional source of error and, most importantly, bias.

60As an alternative, I could use panel data techniques to produce unbiased structural estimates by treating the market
potential as a fixed effect (known as a correlated random effect in the non-linear panel data literature). In particular, Huang
and Rojas (2014) explores three possible solutions: a) controlling for the unobservable with market FEs, b) specifying the
unobservable to be a linear function of average product characteristics, and c) a demeaned regression approach. They show
that solution a) is feasible (and preferable) when the number of goods is large relative to the number of markets, whereas b)
and c) are attractive when the number of markets is large. All three solutions are as effective in removing the bias.
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5.3. Second-Stage: Estimating Supply Parameters

Conditional on the first-stage demand parameters, I estimate three sets of location-specific supply

parameters. I proceed by decomposing this estimation into three consecutive sub-steps.

First, I recover parameters of the distribution of the exogenous supply shocks, which I assume

follow a location-specific logit normal distribution ωl(j)t ∼ LogitNorm(µωl , σωl ), by using a GMM

procedure that matches observed shortage events with the model-predicted probability of shortage.

Second, I estimate marginal costs parameters, and in particular parameters of the distribution of

a firm’s total factor productivity, γl(j)t. Conditional on already estimated demand and supply shock

parameters, I first use a model inversion to recover each firm’s marginal cost. I then rely on a reduced-

form regression of marginal costs on tariffs and distance to recover trade costs. I recover each firm’s TFP

by inverting the marginal cost function, and estimate the location-specific parameters of its distribution

using a Simulated Method of Moments (SMM) approach.

The third and last part of the estimation consists in estimating the parameters of the distribution

of location-specific fixed production costs. For that purpose, I make parametric assumptions about the

form of the fixed cost distribution and use the model to simulate suppliers’ location decisions in order

to match data moments related to the share of firms located in each region.

5.3.1. Supply Step 1: Recovering the Distribution of Exogenous Supply Shocks

Based on first-stage estimates of demand parameters α̂, β̂ and λ̂ and own and cross-price elasticities

ηjjt, ηjkt, I start by estimating the parameters of the distribution of the exogenous supply shock ωl(j)t.

I recover six location-specific parameters, θω ≡ {µωH , µωFN
, µωFS

, σωH , σωFN
, σωFS

}, using a GMM

estimation procedure that matches the model-predicted probability of shortage F
(QD

jmt(p,X)
qjmt

)
for firm j

operating in drug market m with its empirical counterpart, the observed fraction of time short for each

firm j in each quarter t, E
[
1{qjmtωl(j)t < QD

jmt(p, X)}
]
≡ ρjmt.

Moment Conditions. To identify the location-specific mean of the shock, µvarepsilonl where l =

{FN , FS, H}, I rely on moment conditions equating the mean probability of shortage across locations in

the data and in the model:

E

[(
ρjmt − F

(QD
jmt(p, X)

qjmt
; µωl , σωl

))
× 1
{

location l = {FN , FS, H}
}]

= 0 (Moments Shock)

I use similar, higher-order moments (standard deviation and skewness of shortage frequency), to re-

cover the variance of the shock across locations, σωl .

Nested Fixed Point Algorithm. Note that the theoretical probability of shortage F
(

QD
jmt(p,X)

qjmt

)
depends both on the location-specific distribution of the exogenous supply shock (F(.) is the CDF of the

distribution), on demanded quantities QD
jmt(p, X) (recovered for all firms from the demand estimation

step) and on supplied quantities qjmt. Though I never observe these quantities directly in the data,61 I

61Recall that due to the occurrence of supply shocks and firms’ ability to build buffers to insure against shocks, I observe
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can use the model predictions for equilibrium produced quantities q∗jmt (see Eq. Supply) to compute

the theoretical probability that a firm experiences a stock-out event:

−
(
1 + ηjjt

)︸ ︷︷ ︸
price elasticity


Pr(no excess demand)︷ ︸︸ ︷

1 − F

(
QD

jmt(p, X)

q∗jmt

)
contracted quantities︷ ︸︸ ︷

QD
jmt(p, X)

∫ QD
jmt(p,X)

q∗jmt

0
ϵ f (ϵ)dϵ︸ ︷︷ ︸

expected share of surviving capacity in the event of a shortage

= q∗jmt (Eq. Supply)

However, model-predicted supply quantities depend on the distribution of the shock, which in turns

depend on supply quantities themselves. In order to estimate the parameters of the distribution of the

shock, I thus incorporate a nested-fixed point algorithm within the GMM loop, using the equilibrium

supply formula derived from the first-order condition of the firm’s problem in (Eq. Supply) to iterate

on the value of qjmt and {µωl , σωl} until convergence of the GMM objective (see details in Appendix

D.4). Upon convergence of the GMM algorithm, I recover each firm j’s production choice, conditional

on the estimated shock parameters q̂jmt(µ̂ωl , σ̂ωl ).

This step therefore allows to estimate both the location-specific supply shock distributions, firms’

equilibrium production choices qjmt given the distribution of the shock, and firms’ buffer, measured as

the difference between firms’ demanded quantities and supplied quantities:

Bufferjmt ≡ q̂jmt(µ̂ωl , σ̂ωl )− Q̂D
jmt(p, X) (Eq. Buffer)

Above all, it allows us to estimate the expected amount of excess demand within a market, measured

as the expected difference between demand and realized supply, conditional thus on the estimated

distribution of the supply shocks:

Q̂D
jmt(p, X)− E

[
ωl(j)t

]
q̂jmt(µ̂ωl , σ̂ωl ) (Expected Excess)

5.3.2. Supply Step 2: Recovering Marginal Costs, Trade Costs and Firms’ TFP

In this second sub-step, I recover firms’ marginal costs, trade costs and firms’ productivity shocks (TFP)

sequentially, conditional on previously estimated demand and supply shock parameters.

Marginal Costs. I first recover the model-predicted marginal cost for each firm j operating in a

given drug market m and fiscal quarter t by using a model inversion of the equilibrium price function.

Given the estimated demand and supply shock parameters, I derived in previous steps the model-

predicted demanded quantities, supplied quantities and probability of shortages. I then use observed

data on unit prices to recover each firm’s marginal cost by inverting the optimal pricing condition

derived from the first-order conditions of the manufacturer’s problem in Eq. Price:

ĉl(j)t = p∗jmt

∫ Q̂D
jmt(p,X)

q̂jmt(µ̂ωl ,σ̂ωl )

0
e f (e)de

qobserved
jt = min{QD

jt (p, X), qjtωl(j)} = QD
jt (p, X)− Shortt

(
QD

jt (p, X)− qjtωl(j)︸ ︷︷ ︸
Excess demand

)
where Shortt ≡ 1{qjtωl(j)t < QD

jt (p, X)}
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where f (.) is the probability density function of the exogenous supply shock ωl(j)t.

Trade Costs. I then rely on a reduced-form regression of marginal costs on tariffs and distances to

recover trade costs. I first parametrize iceberg trade costs as a function of location-year specific tariffs

in the pharmaceutical sector and haversine distance between a drug’s production location l and unique

destination (the U.S.):

τlt = (1 + tarifflt)
ϕtariff

distϕdist

l (9)

In order to identify the parameters ϕtariff and ϕdist, I then estimate the following log-linear equation:

ln
(

cl(j)mt

)
= ϕ0 + ϕtariff ln(1 + tarifflt) + ϕdist ln distl + δm,l(j) + ζm

ljt

where cl(j)mt are firms marginal costs previously recovered from the price inversion. My dataset allows

me to add a market-location fixed effect δm,l(j), which controls for unobserved determinant of marginal

costs that could be market and origin-location specific. Through the inclusion of these fixed effects, I

can control for unobserved production costs that could potentially bias the estimates. Since recovered

cl(j)mt depend on the estimated shock distribution, demand parameters and observed average wholesale

prices (AWP) prices, I interpret the error term ζl jmt as a measurement error that is uncorrelated with

the right-hand side variables.

Total Factor Productivity. I use these estimated firm-specific marginal costs and location-specific

trade costs, along with the structural form of marginal costs cjlt =
wltτlt

γl(j)t(φl)
to recover each firm’s

predicted TFP. Here, wlt (location-specific average wage in the pharmaceutical manufacturing sector),

τlt (iceberg-trade costs) and φl (average location-specific inspection frequency) are directly recovered

from the data.62 By simply inverting this marginal cost function, I can thus recover each firm j’s TFP as

γ̂l(j)t =
wltτlt

ĉjlt(φl)
.

In order to later compute firms’ expected profits and marginal costs in counterfactual locations,

I then need in a last step to estimate the location-specific distribution of firm’s productivity. For this

purpose, I assume that firms’ productivity draws γl(j)t are location dependent, and all plants in the

same location receive random i.i.d draws from the same log normal distribution with mean µγl and

variance σγl . I then use the recovered γ̂l(j)t for each firm from the precedent step and a Simulated

Method of Moments (SMM) approach to estimate the parameters of the distribution of the TFP shock

such that the model-simulated TFP matches the recovered γ̂l(j)t (see details in Appendix 2).63

5.3.3. Step 3: Estimating the Distribution of Fixed Costs Across Locations

In this last step, I use the estimated parameters of demand, location-specific supply shocks and

marginal costs to recover the location-specific distribution of fixed costs. To identify the parameters

of the fixed cost distribution, I use the decisions rules from the model to simulate suppliers location

62Inspection frequencies are calibrated to follow the data to 1/2.5 for the United States (Home), 1/5 for the OECD (Foreign,
North) and 1/14 for Asia (Foreign, South).

63The estimation relies on a derivative-free algorithm that belongs to the family of black box optimizers, using the Julia
package BlackBoxOptim. In particular, I use an adaptive differential evolution optimizer with radius limited sampling. This
is a numerical optimization algorithm that adjusts its parameters dynamically during the run.
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decisions, and rely on a GMM procedure in order to match data moments capturing the share of firms

located in each region.

Location Choices. Location choices are made before supply and pricing decisions are made, and

before supply shock realizes. Drug manufacturer j chooses the plant location l that maximize their

ex-ante expected profit across locations (see Eq. Location). This profit function integrates several key

components that vary at the location-level: marginal costs, supply shock distribution and fixed costs,

the distribution of the first two having been estimated in the previous section. I parametrize fixed

costs to follow a location-specific log-normal distribution ln(FCjlt) ∼ N(µFCl , σ2
FCl

) with firm-level logit

shocks, the last of which provides stochastic variations in profit. The logit shock is assumed to be i.i.d

across firms and locations and is distributed Extreme Value Type I.

Let Eπl
jmt be the expected profit function of firm j operating in molecule market m at time t and

producing from location l, before supply shocks are realized. Without loss of generality, we can re-

express the firm’s expected profit function from (Eq. Profit) in general term as

Eπl
jmt = ERjlt − MCjlt − FCjlt + ϵjlt

where ERjmt is ex-ante expected revenue in location l (before shocks are realized), FCjlt are fixed costs

in location l, MCjlt are marginal costs and ϵjlt is the logit shock of firm j in location l.

Estimation Approach. Given the logit assumption for the shock, the choice probability of firm j
choosing location l is

Pjlt =
exp

(
Eπl

jmt

)
∑k exp

(
Eπk

jmt

)
The share of firms selecting a specific location l can be thought of as an aggregate of these individual

firm decisions. For a sufficiently large number of firms, the observed share Stl of firms selecting location

l converges to the expected value of the choice probability, i.e. Ŝlt ≈ E[Plt].

Identification relies on two pivotal moments. As the mean µFCl of the log-normal fixed cost distri-

bution changes, it will shift the entire distribution of fixed costs. This will directly influence the share

Stl of firms selecting each location. To identify µFCl , I thus equate the model-predicted share of firms

choosing each location to their observed empirical share (see Equation 10).

The variance σ2
FCl

of the log-normal distribution determines how spread out the fixed costs are

across locations. A higher variance means there’s a wider range of fixed costs, implying greater hetero-

geneity among locations. To identify the variance, I leverage similar higher-order moments (differences

between variance of the observed shares and the variance of the model’s predicted shares, as well as

skewness and kurtosis of the distribution of shares across locations since the log-normal distribution is

skewed). Moment conditions used to identify the mean and variance of fixed cost distribution are then:

E[Slt − E[Pjlt]] = 0

V[Slt]− V[E[Pjlt]] = 0 (10)

39



These moment conditions are used in a GMM framework to jointly estimate µFCl and σ2
FCl

. Given I

previously estimated all other model parameters varying at the location level, I can then simulate the

expected share of firms choosing each location, and use the discrepancies between these simulated

shares and the observed shares to identify the parameters of the fixed costs.

5.4. Estimation Results

Table 4 D5 displays a selection of the main parameter estimates, while Appendix Tables D4 and D7

report the full range of estimated supply and demand parameters. Appendix Table D5 reports the full

set of estimates from the logit demand model and Table D6 reports own and cross-price elasticities over

markets and across locations.

The estimated model allows to go beyond the qualitative evidence on offshoring and quantify the

market-wide trade-off between resilience and cost-cutting. In Table D5, I find that, consistently with

anecdotal evidence, the shortage history of drug manufacturers does not significantly affect their future

market shares. Buyers display high price sensitivity in choosing suppliers for the drug products they

source, but low tastes for past reliability of these suppliers. Higher valuation of a supplier’s shortage

history while drafting procurement contract is nevertheless correlated with lower probability of future

shortages, lower shares of demand unmet and higher equilibrium prices.
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Table 4: Selected Parameters Estimates of the Structural Model

Parameter Description Estimate SE

α Price Sensitivity -0.611 0.255
Demand β Taste for Reliability 0.004 0.007

λ Brand Dummy -0.013 0.001

Shock ωl

µωH Mean (Domestic) -0.345 0.009
µωFS

Mean (Foreign, Asia) -1.128 0.006

Firm’s TFP γl

Supply µγH Mean (Domestic) 0.011 0.008
µγFS

Mean (Foreign, Asia) 0.417 0.103

Trade Cost τl

ϕtariff Log Tariff Parameter 0.884 0.178
ϕdist Log Distance Parameter 0.013 0.002

Fixed Cost FCl

Location µFCH Mean (Domestic) 2.837 0.012
Choice µFCFS

Mean (Foreign, Asia) 2.106 0.084

Notes: This table reports selected parameter estimates for Section 5.4. The first column describes the estimation step. The full table is available
in Appendix 4 while the details of the Demand estimates can be found in Appendix Table D5.

Estimates of the supply parameters are reported in Appendix Table D4. The average U.S.-based

manufacturing plant tends to build less buffer than their Foreign, South counterparts. Indeed, higher

fixed and marginal costs levels make surplus more costly for U.S.-based firms on average, favoring

just-in-time production (a well-known characteristics of the U.S. generic drugs market). I estimated

much lower average capacity yield (fraction of supply surviving a disruption) for plants offshored to

the South, suggesting that the average amplitude of shocks in Foreign, South plants is much larger than

for the U.S. (Appendix Table D4).

6. Counterfactuals and policy applications

6.1. Objectives and Summary

Having quantified the baseline model, I study the welfare consequences of regulations aiming to correct

market failures in generic drugs procurement and evaluate the impact of counterfactual policy designs.

My analysis articulates around two pivotal policy avenues.

First, a policy assuming the frictions introduced by the current buyer-seller contracts cannot be

significantly dampened, and thus focusing on switching back to the previous organizational structure,
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by re-shoring production to U.S. territories. Policies focused on shortening supply chains and bringing

back production of essential manufacturing sectors home have been widely discussed since 2017, both

in the U.S. and Europe [Washington Post, January 2023; The Economist Report, 2021].

Second, a set of two policies focused on solving market failures introduced by current procurement

contracts inside the new globalized market. The first policy focuses on alleviating short-term price

rigidities by authorizing the unit price of a product to increase in the amount of supply shortfall.

The assumption is that authorizing short-term price variations after the occurrence of a shortage

would allow the market to price capacity and help incentivizing production investments post-shock.

The second policy focuses on alleviating barriers to contract on production reliability by enforcing

failure-to-supply clauses, thus effectively moving the market closer to ”Japanese-Type” contracts. The

assumption is that such policy would prompt market players to internalize shortage costs on patients

and would provide higher margins for reliable suppliers, allowing them to invest back in facilities

maintenance and high-quality production processes.

Throughout these analyses, my outcomes of interest are the equilibrium probability of shortages

and share of excess demand in the market, drug prices, consumer welfare, and firm profits.

6.2. Counterfactual 1: Subsidies to Re-Shoring

In this counterfactual scenario, I evaluate the impact of a policy designed to influence sourcing

decisions by subsidizing re-shoring to U.S. territories, re-establishing the tax breaks that existed

pre-2006 in the United States.

Context of the Proposed Reshoring Policy. From 1976 to 2006, the Internal Revenue Code ex-

empted from taxation corporate income generated in U.S. territories. The tax break would have saved

drug companies the 2022 equivalent of $235 million per year, or 70 cents per American (Washington

Post, January 2023), and its ending coincided with the start of offshoring of drug plants to the South.

Post-2020, U.S. and European governments started a push towards tax incentives that encourage

reshoring (see details in Appendix E.2). In the U.S., key legislative proposals, such as the Domestic Med-
ical and Drug Manufacturing Tax Credit would provide manufacturers with a tax credit of 10.5% of the

net income from the sale of critical medical products produced domestically. If passed, this would ef-

fectively halve their corporate tax. Concurrently, President Joe Biden’s 2021 American Jobs Plan pledges

an investment of $300 billion towards U.S. manufacturing, which includes a substantial allocation for

reinforcing supply chains and ensuring pandemic readiness by reshoring Active Pharmaceutical Ingre-

dients (APIs).64 In France, President Emmanuel Macron, publicly announced in June 2023 that France

would reshore the production of 50 essential medicines, backed by significant public funding.

It is crucial to acknowledge that reshoring production of pharmaceuticals do not come free of

frictions. The process of relocating a single product can span up to 2 years, inclusive of all logistical,

64The White House’s June 2021 100-day review of America’s Supply Chains: “Building Resilient Supply Chains, Revitaliz-
ing American Manufacturing and Fostering Broad-Based Growth”

42

https://www.washingtonpost.com/opinions/2023/01/16/fix-drug-shortage-tax-breaks/
https://impact.economist.com/perspectives/sites/default/files/ei202_-_fragile_supply_chains_-_dv6.pdf
https://www.washingtonpost.com/opinions/2023/01/16/fix-drug-shortage-tax-breaks/
https://www.washingtonpost.com/opinions/2023/01/16/fix-drug-shortage-tax-breaks/
https://www.whitehouse.gov/wp-content/uploads/2021/06/100-day-supply-chain-review-report.pdf
https://www.whitehouse.gov/wp-content/uploads/2021/06/100-day-supply-chain-review-report.pdf


regulatory, and administrative tasks. Establishing a new facility from the ground up can demand

an investment upwards of $2 billion and a timeline of 5 years. An added layer of complexity arises

from the potential unforeseen consequences of reshoring. For instance, if companies find it more

cost-effective to maintain larger buffers abroad, then compelling them to re-shore might inadvertently

amplify supply disruptions.

Reshoring: Counterfactual Framework. Let sreshore denote a subsidy payable to any firm that
reshores production to U.S. territories. Assuming three locations, l = {H, FN , FS}, denoting Home,
Foreign North, Foreign South respectively, supplier j’s location problem (Eq. Location) becomes:

l∗ = arg max
{πl

jmt}
Eωl

{
πH

jmt

(
cH

jt , FCH
jmt, ωH(j)t; q∗jmt, p∗jmt

)
, πFN

jmt

(
cFN

jt , FCFN
jmt, ωFN(j)t; q∗jmt, p∗jmt

)
, πFS

jmt

(
cFS

jt , FCFS
jmt, ωFS(j)t; q∗jmt, p∗jmt

)}
.

where, for each drug market m

Eωl

[
πl

jt (·)
]
=

No excess demand︷ ︸︸ ︷[
1 − F

(
QD

jt (p, X)

qjt

)]
pjtQD

jt (p, X) +

Excess demand︷ ︸︸ ︷
F

(
QD

jt (p, X)

qjt

)
pjtqjtE

[
ωl(j)1

{
ωl(j) <

QD
jt (p, X)

qjt

}]
− cjlt (φl) qjt − Fc

jt + sreshore 1{l = H} (11)

This equation modifies the baseline expected manufacturer’s profit (Eq. Eq. Profit) by adding a

subsidy to firms choosing to locate their plans at ”Home” (l = H), sreshore 1{l = H}, thus making the

option of reshoring to the U.S. less costly for drug manufacturers. I define this subsidy as a percentage

of the average expected firm’s revenue within a market-year.

Conterfactual Results. Figure 7 depicts the changes in equilibrium outcomes that follow the simu-

lation of this counterfactual scenario under previously estimated parameter values. The y-axis displays

changes in equilibrium outcomes (as prices, share of excess demand or consumer surplus), measured

in percentage deviation from the current baseline measures. The x-axis displays changes in the rate

of the reshoring tax break. I vary the subsidy between 0%(baseline) and 20% of the average expected

firm’s revenue within a market-year, the suggested U.S. tax break being around 10%.

Subsidizing reshoring unequivocally results in an increase in the unit price of drug products. In

panel 7a, the suggested 10% tax break translates into a 30% increase in prices over injectable markets.

A 15 to 20% tax break could lead to up to a 50% increase in price across injectable markets.

Compared to the current situation, a reshoring tax break does achieve a reduction in the equilibrium

probability that shortages occur: by 5% for a 10% tax break on firms’ revenues, to 10% by increasing the

tax break to 20% of revenues (Panel 7b). However, the economy-wide expected share of excess demand

increases compared to the baseline levels: a 10% tax break on revenues increases the expected share

of missing supply by 12% (Panel 7a). While the expected share of excess demand in the economy

decreases slightly with higher levels of subsidies, a 20% tax rebate level for reshoring still corresponds

to a 1% higher expected share of excess demand.
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(c) Consumer Surplus and Outside Option
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Figure 7: Changes in Equilibrium Outcomes as a Function of Reshoring Subsidy Levels

Notes: The y-axis displays changes in equilibrium outcomes (as prices, share of excess demand or consumer surplus), measured in percentage
deviation from the current baseline measures. The x-axis displays changes in the rate of the reshoring tax break (the baseline is 0). The
suggested U.S. tax break being around 10%. In panel 7a, both the average drug unit price and the expected share of excess demand are above
baseline. Unit prices increase with the subsidy amounts while expected excess demand decreases. Panel 7b shows that both the average
supplied quantity the probability of shortages decrease compared to the baseline (around 10% lower supply and a 5% lower probability of
shortage at the 10% tax break level. In Panel 7c, consumer surplus, measured using Expected Utility (EU) from the Logit, increases by 1-2%
with a reshoring subsidy, while the share of patients choosing to not consume decreases slightly. More results can be found in Appendix E1.

While somewhat counter-intuitive, the mechanisms behind this result are simple: on Panel 7b, sub-

sidizing reshoring actually results in a decrease in average supplied quantities (around 12% at the 10%

tax rebate), as U.S.-based manufacturing plants tend to build less buffer than their foreign counterpart.

Indeed, higher fixed and marginal cost levels make surplus more costly on average (see estimated av-

erage costs from 5.4), favoring “just-in-time” production. Though disruptions become less likely on

average on Panel 7b, small shocks are expected to result in immediate unfulfilled demand due to the

absence of market-wide buffers.

At a 10% tax break level, we may expect up to a 50% relocation in the share of firms located in

the U.S. compared to today (see Appendix Figure E1). The impact of such a policy on equilibrium

shortage levels would thus depend on the actual realization of supply shocks, and may need to go

in hands with policies incentivizing buffers or redundancies to effectively increase products availability.
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Overall, reshoring results in a slight increase in consumer surplus, as measured by expected utility

(1 to 2% compared to today), which mostly results from decreases in the share of patients choosing the

outside option of not consuming (Panel 7).

6.3. Counterfactual 2: Pricing Market Capacity

I now relax the short-run price rigidities constraint introduced by procurement contracts and study

how firms’ supply decisions and equilibrium excess demand measures are influenced by post-shock

price variations. Specifically, I modify the baseline supply model (4.4.1) to permit unit prices to be

indexed on supply conditions and to increase proportionally with the magnitude of supply scarcity.

Price-Adjustment During Shortages: Counterfactual Framework. I assume that firm j’ price

variation at time t depends on molecule-market excess demand. Under this scenario, each supplier’s price

pjmt becomes a stochastic variable, whose value depends on the realization of supply.65

I start by defining the market-level expected excess demand measure used in this counterfactual

scenario before detailing the implementation of the new pricing scheme.

Definition 6.1 (Market-level Expected Excess Demand). At the market m level, the expected total amount of
excess demand is defined as

Jm

∑
j=1

max
{

QD
jmt (p, X)− qjmtE

[
ωl(j)t|ωl(j)t <

QD
jmt(p, X)

qjmt

]
, 0
}

where QD
jmt (p, X) is demanded quantities for firm j’s product, qjmt are quantities actually produced by firm j

and E
[
ωl(j)t|ωl(j)t <

QD
jmt(p,X)

qjmt

]
measures the expected share of supply that survives the shock, conditional on

a shortage occurring. This identity quantifies the expected missing supplied quantities to cover demand at the
market level. The total expected share of excess demand is defined as:

Jm

∑
j=1

max

{
QD

jmt (p, X)− qjmtE
[
ωl(j)t|ωl(j)t <

QD
jmt(p,X)

qjmt

]
QD

jmt (p, X)
, 0

}
≡

Jm

∑
j=1

max
{

δexcess
jmt , 0

}
(12)

The ensuing counterfactual pricing scheme relies on the premise that only supply that contributes

to reliability is rewarded. If no firm is expected to be short and there is ample market capacity in

period t, firm j’s price is fixed to previously contracted market price pjmt (Equation 13, first case).

The underlying assumption is that absent of excess demand in the economy, unused capacities bring

no economic benefits (the model assume surplus disposal). On the contrary, under situation of excess

demand (Definition 6.1), which arises whenever k ≥ 1 firms are short in the market (which may include

65The implementation of a spot market allowing to price for capacities was one of the solution implemented for the
electricity market. While the delays necessary for capacity adjustment are greater for injectable drugs than for electricity
generation, so that a ”spot market” for drugs is not realizable, the underlying idea of pricing capacity is similar.
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j itself), firm j’s price increases proportionally to the expected share of missing supply in the market:66

p̃jmt =

pjmt if no firms short

pjmt + γexcess ∑Jm
k=1 max

{
δexcess

kmt , 0
}

pjmt if k ≥ 1 firms short
(13)

The parameter γexcess in Equation 13 represents price sensitivity - the rate at which firm j’s price

increases in proportion to the amount of excess demand. The maximum function ensures that price

increases only occur when there is positive excess demand.

Based on previously estimated model parameters, I re-simulate the full model under this new

pricing scheme, testing for different levels of price sensitivity. I allow price sensitivity to supply

shortfall to vary between 0 (baseline scenario) and 2.0 (situation under which a disruption leading to

50% of missing quantities on the market results in a 100% increase in prices) and compare shortage

outcomes, firms’ outcomes and welfare measures under this scenario.

Counterfactual Results. Figure 8 displays the evolution of the model’s equilibrium outcomes as

a function of price sensitivity. The y-axis displays changes in equilibrium outcomes, measured in

percentage deviation from the current baseline measures. The x-axis displays changes in the price

sensitivity parameter γexcess. In most sub-plots, I group together the U.S. and OECD locations, as

they display similar trends in equilibrium outcomes, and consider the Asian region separately, as

counterfactual patterns often differ for drug suppliers located in this region.

Three main results arise from this counterfactual simulation.

First, compared to today’s baseline, all three production regions (the U.S., OECD and Asia) effec-

tively witness a sharp increase in the average probability that shortages occur as price sensitivity to excess

demand increases (Panel 8a). While unit prices of plants located in Asia are slightly higher than base-

line (up to 4%) for price increases that are less than one-to-one in the amount of supply shortfall, prices

of U.S.-based plants always drop compared to today (Panel 8b). Higher price sensitivity always goes in

hand with moderate decreases in average unit prices .

The underlying mechanism is simple. This counterfactual scenario implicitly creates a capacity

market in which firms who are able to supply during shortage periods are paid more, but the otherwise

unit price remains low. When capacity is scarce the capacity price is high; when capacity is plentiful

the capacity price is low. The negative correlation between equilibrium unit prices and price sensitivity

to shortages can then be explained by larger and more frequent deviations in prices as a result of the

overall higher probability of “disruptions” in the economy. As larger price sensitivity to excess demand

means larger price increases post shortage, firms get incentives to let supply periodically fail to benefit

from higher shortage-adjusted prices.

Second, the model predicts that price-sensitivity to shortages result in large reductions in unfulfilled

66Depending on whether manufacturing firm j is itself short or not, the new price scheme under situation of excess demand
enters firm j’s expected profit function through either the “non-short” or “short” part. See Appendix E.3 for details.
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(c) Expected Share of Excess Demand
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(d) Consumer Surplus and Outside Option
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Figure 8: Changes in Equilibrium Outcomes as a Function of Price Sensitivity To Shortages

Notes: The y-axis displays changes in equilibrium outcomes (as prices, share of excess demand or consumer surplus), measured in percentage
deviation from the current baseline measures. The x-axis displays changes in the price sensitivity parameter γexcess from Equation 13 (the
baseline is 0). Panel 8a shows that, the more sensitive to excess demand prices are, the more the probability of shortage increases, for all
production locations. Panel 8b shows that the average contracted unit price decreases with price sensitivity. U.S. and OECD plants’ prices are
always below baseline, while Asia locations are above baseline when prices vary less than one-to-one with excess demand. In Panel 8c, the
expected share of excess demand decreases overall and for Asia plants, but increases for U.S. and OECD-based plants. Panel 8d shows that
the overall consumer surplus (Expected Utility) increases by 3 to 8%, while the share of patients choosing to not consume a drug decreases
by 3% on average. More results can be found in Appendix E2.

demand from Asian plants (between -40% and -70% for price sensitivity γexcess between 1.0 and 1.5),67

while the U.S./OECD-based locations experience on the contrary higher shares of excess demand (Panel

8c), and thus a worsening of shortage events. As more than 80% of the U.S. production of generic drugs

is currently sourced from Asia, this policy may prove effective in reducing the equilibrium shares of

unmet demand, while keeping the current, globalized, organizational structure.

Perhaps counter-intuitively, even though pricing market capacity may result in higher probabilities

of disruptions, it should also be resulting in less severe shortages. These dynamics take root in location

differentials in both i) production costs and ii) average amplitude of shocks. When production losses are

67A γexcess coefficient of 1.0 corresponds to a one-to-one price increase with supply shortfall. A coefficient of 1.5 means
that if 10% of demand is unfulfilled post shock, prices will increase by 15%
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expected to be large, firms anticipating sharp price increases will insure against the shock by building

more surplus,68 and a lower share of these firms’ demand will remained unfulfilled.

With large price sensitivity to shortages, production locations that were estimated to experience

larger expected shocks (smaller average capacity yield ωlmt), such as Asia (see Section (5.4)) should

now display less excess demand compared to the baseline (Panel 8c). On the contrary, when expected

production losses are small, firms now have incentives to restrict supply in order to take advantage of higher
prices. This corresponds to places with large estimated market-wide capacity yield ωl(j)t, as the U.S.

and the OECD (Panel 8c).

Third, allowing price variations post-shock lead to higher offshoring levels, with a 10 to 20%

increase in offshoring of production to South locations, and a sharp 50 to 70% decrease in the share

of U.S.-based firms (see Appendix E2). Under the new counterfactual scenario, profit-margins of

U.S.-based firms indeed become thinner (Figure E2)and producing at Home can only be sustained

under higher level of disruptions. U.S.-based suppliers end up offshoring productions to places where

they can increase profit margins, by trading lower production costs against the possibility of targeting

higher disruptions levels than what can be achieve within the U.S. borders.

Conclusion. Overall, allowing prices to react to market conditions result in an overall increase in

Welfare (Expected Utility increases by 2 to 8% compared to baseline levels, see Panel 8d) and to a 1 to

6% decrease in the share of patients choosing to not consume drug products (by 1 to 6%).

The overall effect of a policy allowing such short-term price variations is nevertheless ambiguous

and depends on both price sensitivity levels and on the share of firms located in regions expecting large

capacity yield ωl(j)t post-shock. Firms will only choose larger supply levels to insure against higher

disruption probabilities if the combination of current market prices and price-sensitivity make capacity

investment profitable (see Panel 8c). Plants in more regulated, less risky locations, as the U.S. and

OECD countries, should have more incentives than South plants to induce shortages in order to take

advantages of ex-post price increases.

6.4. Counterfactual 3. Changing Contracts: Enforcing Penalties

This third counterfactual scenario directly targets deficiencies in the prevailing procurement contracts.

A salient feature of the contemporary procurement process is that sellers’ reliability, as measured by

their historical record of disruptions, does not markedly affect market shares (see Table D5 estimates).

The question then arises: How can investments in production stability be incentivized?

Procurement Systems in Global Markets. The current procurement systems articulates around a

system of auctions to select low-cost suppliers and relies on plants inspection to ensure adherence to

U.S. “Good Manufacturing Practices” (see discussion from Section 2.1). Yet, in the face of the current

globalized production landscape, these inspections have proven to be both deficient and expensive

68Surplus is defined as the difference between realized supply (production choices adjusted for the shock) and demanded
quantities: surplusjmt ≡ qjmtωl(j)t − QD

jmt(·)

48



(see Sections 4.5 and A.6). An alternative procurement method, colloquially termed “Japanese-type

contracts”, operates on the premises that, when inspections become prohibitively costly, product quality

is better assured by cultivating dependable relationships between buyers and suppliers. This approach

hinges on extended-term contracts that offer suppliers assurances regarding future sales, coupled with

the imposition of penalties if these contracts are breached.69

Regarding generic injectable sales, regulatory enforcement of a penalty system for supply failures

might prompt industry participants to internalize the substantial costs associated with excessively

reducing production costs at the expense of supply reliability. Enforcing penalties may allow reliable

suppliers to benefit from higher profit margins, thereby incentivizing investments in the production

process. While contracts between GPOs and drug manufacturers do include clauses addressing failures

to supply, these penalties are seldom implemented in real-world scenarios.70

Failure-to-supply Penalty: Framework. I modify the baseline manufacturer’s expected profit func-
tion (Equation 4.4.1) such that supplier j operating in molecule market m at time t now receives a fine
whenever a shortage happens (positive excess demand):

Eωl πjmt(·) =
[

1 − F

(
QD

jmt(p, X)

qjmt

)]
pjmtQD

jmt(p, X)

+ F

(
QD

jmt(p, X)

qjmt

)[
pjmtqjmtE

(
ωl(j)t | ωl(j) <

QD
jmt(p, X)

qjmt

)
− Penalty

]
− TCjmt (14)

where TCjmt ≡
(

cjlt(φl)qjmt + FCjmt

)
denotes total cost of firm j. Equation 4.4.1 is unchanged at

the exception of the Penalty term. I define the fine as a proportion to the missing supplied quantities:

Penalty ≡ PenaltyRate

(
QD

jmt(p, X)− qjmtE

[
ωl | ωl <

QD
jmt(p, X)

qjmt

]
︸ ︷︷ ︸

Excess Demand for Supplier j (quantities)

)
(15)

Counterfactual Results. I re-simulate the entire model under specification (14), keeping the esti-

mated parameter values constant. Figure (9) displays on the y-axis percentage deviation in equilibrium

outcomes from the prevailing baseline, as a function of penalty rates (on the x-axis).

To set penalty rates, I use multiples of average expected firms revenues at the market level (see

Equation 15).71 I start from minimal penalty rates (0.1 time the average expected firm’s revenue in

the market) that may not necessarily deter any firm from participating, and increase thresholds to

penalty levels that may deter most firms from failing to honor their commitments (2.5 times the average

expected firm’s revenue in the market).

The main outcomes of this counterfactual simulation are threefold.

69These stylized procurement systems were defined in Taylor and Wiggins (1997) and recently discussed in Schott et
al. (2017): “Under the “Japanese” system, buyers motivate sellers to maintain product quality by committing to long-run
purchases at a price above sellers’ costs. The opposing “American” system, by contrast, has buyers choosing the lowest-cost
seller for each order via competitive bidding, and using costly inspection to deter cheaters from shipping low quality”.

70This was corroborated during a Spring 2022 interview with Todd Ebert, the President of the GPO Association.
71Alternative economic indicators that could be used to define penalty values include percentages over a firm’s contract

value or profit margin, or the social cost of supply failure for a given market.
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Figure 9: Counterfactual: Enforcing Penalties for failure-to-supply

Notes: The y-axis displays changes in equilibrium outcomes (as prices, share of excess demand or consumer surplus), measured in percentage
deviation from the current baseline measures. The x-axis displays changes in the penalty rate from Equation 15 (the baseline is 0). Panel
9a shows that the average drug’s unit prices increases with the penalty value (5 to 15%). This however does not deter consumption, as the
outside option share (patients not consuming the drug) decreases by 30 to 45%) and Welfare increases by 30 to 38%. Panel 9b depict changes
in equilibrium shortage outcomes as a function of penalty rates. Penalties approximating 0.5 times the average firm’s anticipated market
profit would decrease the fraction of unmet demand by 45%. More results can be found in Appendix E3.

Firstly, higher penalty levels correlate with higher average equilibrium unit prices - in the range of

5 to 15% for penalties between 0.5 to 2.5 times the average firm’s expected profit (refer to the purple

line in Figure 9a).72

Secondly, the rise in Consumer Welfare, quantified by Expected Utility (illustrated in green in

Panel (9a)) is the most significant among all three counterfactual scenarios examined (reshoring, pricing

capacity and “Japanese” contracts). Welfare surges by 30 to 38% relative to baseline levels, translating

into pronounced declines in the fraction of patients selecting the outside option (a reduction of 30 to

45% compared to current figures, as shown in yellow in Panel 9a). This suggests that the relative price

escalation does not necessarily deter consumption access. Additionally, as shown in Figure 9a, prices,

welfare, and patients choices to abstain from consumption remain relatively stable with increasing

penalty values. This pattern implies that modest penalty levels could enhance Social Welfare without

causing excessive price hikes.

Thirdly, of all counterfactual scenarios, penalty enforcement induces the most substantial reduction

in the fraction of unfulfilled demand and the likelihood of shortages, for reasonably small penalty

thresholds. Panel 9b depicts equilibrium shortage outcomes against varying penalty rates. Penalties

approximating 0.5 times the average firm’s anticipated market profit would decrease the probability of

shortages by 35% and diminish the fraction of unmet demand by 45%.73

72I do not differentiate unit prices, welfare and share of consumers choosing the outside option based on production
locations, as no pronounced regional differences emerged, unlike the previous counterfactual (6.3).

73It is noteworthy that penalties surpassing 1.5 times the average firm’s expected revenue fail to mitigate shortage fre-
quency or severity. A plausible explanation is that beyond a specific penalty threshold, the adverse impact on suppliers’
profitability becomes too pronounced: disruptions results in big monetary losses and the level of buffers necessary to insure
against shortages becomes so important that it reduces profit margins below current levels. . The model indeed forecasts a
30 to 60% surge in supplied quantities for penalties between 1.0 and 2.0 times the firm’s expected revenue (refer to Appendix
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Beyond these three main outcomes, penalty enforcement would drive a geographical shift in pro-

duction, even at modest fine levels (refer to Appendix Figure E3). Imposing larger penalties, at half

the average firm’s projected revenue, results in a 37% reduction in the proportion of OECD and Asian-

based firms relative to current figures. This suggests that under large penalties, the cost of disruptions

may become prohibitive for locations experiencing large supply shocks.

6.5. Counterfactuals: Comparison and Takeaways

This section compares the effects of the considered counterfactual experiments on shortage outcomes,

prices and Welfare and discusses first and second-best policies.

Main Takeaway: Welfare Increases. My counterfactual experiments show that the net welfare

gains of reducing supply shortfall levels may be large and are not offset by the associated increase in

drug prices. All three scenarios lead to higher Social Welfare, thus corroborating that the current level

of shortages may not be achieving the first-best equilibrium. While under all scenarios, reaching higher

welfare levels come at the cost of higher unit prices and an increase in market concentration, this does

not result in crowding out effects on the patients side. On the contrary, enforcing penalties results in

a 37% increase in consumption access to drug products and a 30% increase in Welfare, while allowing

the market prices to react to excess demand results in a 3% increase in consumption access and a 5%

increase in Welfare (see Table 5). Note that targeting a zero-shortage level appears suboptimal: highest

welfare levels are reached under equilibria characterized by non-zero levels of excess demand.

Increases in drug prices should remain nominal as they would almost exclusively affect generic

medications, most of which currently sell for less than 10% of the original branded prices.74

Table 5: Counterfactual Changes in Welfare Compared to Baseline

Counterfactual Experiment

% Deviation from Baseline [Range]

Reshoring SR Price Variations Enforcing Penalties

Social Welfare (Expected Utility) 0.5 to 2% 2 to 9% 30 to 37%
Outside Option Share -0.1 to -1.3% -0.1 to -4.5% -29 to -48%
E[Share Excess Demand] +13 to +2% +20 to -90% -50 to +3%

Notes: This table summarizes the percentage deviation from baseline of the main consumer welfare and shortage measures. For each
estimate, I display the 20 to 80th percentile range of values, rounded. See Appendix Table E1 for detailed estimates, standard errors, and a
full description of changes in equilibrium measures, including prices, profits, concentration...

Comparing Counterfactuals: Underlying Assumptions. Each considered counterfactual deals

with one market failure. Subsidizing reshoring addresses regulatory deficiencies outside of the U.S.

Figures E3), aligning with a spike in market concentration (Herfindahl–Hirschman Index).
74The median unit price of generic drugs in my data is $1.1, see Table B3 and price increases under all counterfactual

experiments maintain generic drug prices below the branded drug levels.
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borders.75 Pricing capacity targets short-run price rigidities in procurement contracts. Enforcing penal-

ties for failure to supply addresses the inability of the market to capture and reward reliability in

production.

The reshoring scenario rests on the premises that the problem fundamentally lies in the offshoring

process, and that the current globalized production structure creates frictions that may not be allevi-

ated. On the contrary, the two following scenarios posits that the current system could be optimally

leveraging comparative production advantages–allocating the production of innovative drug products

to the North and generic drugs to the South. These scenarios, therefore, aim to tackle the underlying

roots of the market failure more directly; specifically, the market’s limited ability to adequately reward

production reliability.

Comparing Counterfactuals: How are policies ranked? While heavily emphasized in the recent

policy debates (see Appendix E.2), switching back to a re-shored production system does not achieve

the first best equilibrium. By implementing changes in procurement contracts that may help aligning

price mechanisms with quality assurance to preempt sub-optimal market behaviors, the two other

counterfactual experiments allow to reach substantially higher Welfare levels (see Table 5).

Reshoring. A re-shoring subsidy proves to be the priciest option to tackle shortages among all coun-

terfactuals, resulting in a 30% increase in price at the suggested 10% tax break level (in addition to the

direct tax subsidy). Its effectiveness in reducing shortage levels is moreover the most contrasted among

all three scenarios: while the probability of shortages decreases compared to the baseline situation (by

5 to 10%), all levels of reshoring subsidies result in an overall decrease in production quantities (around

10-15%), and higher expected share of excess demand (10%).76 As a result, the increase in consumer

surplus is the smallest among all three considered counterfactual (around 1-2%).

Pricing capacity. While improvements in consumer Welfare is more marked than under the reshoring

counterfactual (increasing by 2 to 9%), the overall effect of a policy allowing short-run price variations

post shock is ambiguous. Anticipated large price increases during shortages may give firms located in

places expecting relatively small loss in stocks (such that the U.S.) some incentives to restrict supply.

Depending on current price levels, the sensitivity of prices to shortages, and the future production

structure (offshored or partially re-shored), allowing prices to adjust upwards when supply is low may

in some cases decrease the equilibrium expected share of excess demand. Most values of the price

sensitivity parameter however lead to higher welfare levels and lower excess demand, suggesting that

laws attempting to prevent generic manufacturers from being able to take any price increase, such that

the Inflation Reduction Act of 2022, may be worsening off the current situation.77

75Namely, differentials in regulatory requirements across locations and inability of the U.S. regulator to enforce inspections
abroad, making South locations more prone to adverse supply shocks than North locations, see Section 5.4).

76There are two potential explanations behind this outcome. Firstly, high sunk costs of re-shoring production may lead
firms to reduce surplus even more in order to minimize additional expenses, magnifying the adverse effects of ‘just-in-time”
production. Secondly, because U.S.-based firms tend to build less buffer than their Asian counterparts (higher production
costs means surplus is more expensive), reshoring may actually decreases the overall market capacity.

77The Inflation Reduction Act of 2022 (IRA) includes several provisions to lower prescription drug costs for people with
Medicare and reduce drug spending by the federal government. This legislation has taken shape amidst strong bipartisan,
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Enforcing penalties. Changing contracts tso move away from an “American Procurement System”

and closer to a “Japanese” system (see section 6.4) achieves the highest increase in welfare among all

considered counterfactuals, while being the most effective in reducing expected excess demand levels

(see Table 5). Implementing a system of penalty for failure to supply would provide higher margins

for reliable suppliers (see Figure E3), allowing them to invest back in facilities maintenance and high-

quality production processes. This policy automatically leads to an increase in market concentration

(higher HHI in Figure E3), purposely driven by an increase in the exit rate of failing manufacturers.

Without implementing a reshoring subsidy per se, it leads to re-allocation of production plants from

Asia to places experiencing less frequent disruptions (the U.S. and OECD). Both the average price

increases across injectable markets and the share of reshored production remain inferior to the scenario

in which reshoring was directly subsidized.

Anecdotally, a move towards such “Japanese-type” contracts has emerged lately in the U.S., with

the stated purpose of fighting drug shortages. A new not-for-profit consortium of hospitals, Civica

Rx,78 started sourcing directly from contract manufacturers. This new venture negotiates longer-term

contracts with trusted manufacturers to guarantee suppliers stable supply levels, in return for higher

drug prices, bypassing buyers and the current for-profit procuring system. With some success so far:

from 2002 to 2022, Civica Rx achieved a 96% fulfillment of its contractually guaranteed volume, while

GPOs only reached 86% (Source: Biospace).

7. Conclusion

What drives pharmaceutical shortages? More frequent disruptions at the production source and a

procurement system that has failed to adapt to the new offshore characteristics of generic drug supply

chains. I argue that disruptions in injectable drug markets turn into shortages because of a set of

frictions in the current procurement systems: short-run rigidity in pricing and capacity adjustment,

along with a lack of transparency about suppliers’ identity and production locations. Price and capacity

rigidities have long been features of injectable drug markets and are shared with many other industries,

such as electricity generation. Traceability issues have been amplified by the new offshore structure and

contribute to the failure of the pricing mechanisms to capture production reliability.

I develop and estimate a structural model of global drug supply and procurement that endoge-

nously generates shortages in equilibrium. The model underscores that offshoring serves as a mech-

anism for firms to cut costs in return for a higher probability of manufacturing disruptions. There

exists a production possibility frontier that trades off manufacturing quality (low risk of disruption)

against low production costs. For firms producing generic drugs with narrow margins, shifting toward

lower-cost production is a means to increase profits. Firms would presumably like to cut costs in re-

turn for lower resilience within the U.S.; however, the FDA’s rigorous inspections of minimum quality

public support for the government to address high and rising drug prices, in the context of collusive behaviors in the non-
injectable generic industry (see Cuddy (2020)). Scott Gottlieb, former FDA’s commissioner, at CBS News in May 2023:“the
administration under the IRA should carve out these old sterile injectable drugs entirely.”

78See The American Hospital Association (AH)
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standards on U.S. soil make it challenging to adopt manufacturing technologies that are both low-cost

and high-failure-probability. Hence, offshoring works as a lever for firms to achieve lower costs and

manufacturing quality than is feasible in the United States, by taking advantage of lower regulatory

thresholds in the South. Combined with market concentration and supply rigidities, this subsequently

leads to more frequent and severe shortages of offshored products.

Counterfactual policy analyses suggest that the potential of reshoring production to increase con-

sumer welfare and reduce shortages may be limited. In fact, reshoring only modestly increases welfare

by 1-2% and could hike drug prices by approximately 30%. Conversely, policy measures directly

addressing market failures, such as imposing penalties for failure-to-supply in contracts, show more

promise. Penalizing supply shortcomings could increase welfare by as much as 37% and enhance

patient access to injectable drug products by 40%.

There is inevitably a trade-off between the price people are willing to pay for a drug and how

reliable they want the supply to be. A sudden spike in demand for drugs and medical equipment,

such as the one experienced during the Covid-19 pandemic, may well result in shortages, regardless

of where drugs are produced. The major issue may be that the industry’s focus on cost-cutting leaves

little room to invest in production capacities that would be robust enough to respond to supply chain

disruptions. Investing in the resilience of drugs supply chain comes at a cost, and solving these issues

would invariably mean higher drug prices.
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Appendix A - Market Structure and Generic Drugs Supply Chains

This section first summarizes the functioning of the U.S. Market for Generic Drugs, before describing

the data collected.79 It then leverages this new dataset to portrait the sterile injectable drug markets

and underline some key features of this market that make it especially sensitive to shortages.

A.1. The U.S. Market for Generic DrugsMarket Structure Tendering

Manufacturer

Manufacturing

Labeler
(application holder)

Group Purchasing
Organization (GPO)

Hospitals

Purchasing

Regulatory

Inspection

product product product

A
N

D
A

payment payment payment

Figure A1: Market Structure

To manufacture a new (branded) drug, one needs a patent. These patents generally have limited life-

span (typically twenty years in the United States, but most drugs lose their exclusivity after 7 years,

and the first approved generic drug receives 180 days of exclusivity against additional generic entry).80

On the day a branded drug’s patent expires, numerous generic pharmaceutical companies stand ready

to make it. In order to sell a product to the U.S. market, pharmaceutical companies that want to market

a generic version of an existing drug (i.e., generic sponsors, or “labelers”) submit an Abbreviated New

Drug Application (”ANDA”) to the FDA. This only requires its sponsor (the “labelers”) to establish

pharmaceutical and bioequivalence to the brand and compliance with good manufacturing practices.

Note that it is not required to establish the safety and efficacy of the generic.81 The drug sponsor thus

manufacture the generic drug, which generally involves several steps, transforming active pharmaceu-

79Figure ?? in Appendix summarizes the main datasets used in this paper
80Source: https://www.fda.gov/drugs/development-approval-process-drugs/
81See Bronnenberg et al. (2015) for a discussion of branded versus generic drugs.
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tical ingredients (API)82 to finished drug form products (FDF).83 This manufacturing part may either

be made by the labeler’s own manufacturing plants, or outsourced to contract manufacturing organi-

zations. This process can be fully or partially offshored. For the remaining of this paper, I will refer

to pharmaceutical firms acting as generic sponsors as “labelers”, and to the manufacturing plants as

“manufacturers”.

In the United States, buyers are Group Purchasing Organizations (GPOs), which aggregate demand

from hospitals and plays a distribution role. The main purpose of this intermediary is to negotiate

volume discounts and achieve lower drug prices than each individual hospital might attain on its own.

96-98% of hospitals would buy drugs through Group Purchasing Organizations (GPOs) and 80% of

hospital purchases occur through GPOs. Payers (e.g., insurers, Medicare) then reimburse hospitals

for drugs purchased using fixed payments (prospective payments to hospitals, based on weighted

average of sale prices in previous period). The GPO buys drug products directly from manufacturers,

negotiating prices for bulk products.84 Burns and Lee (2008) report that 41% of the U.S. providers

surveyed belong to more than one GPO, but they route most of their purchases through a single GPO

and utilize another only for specific contracts in limited supply areas. See Figure A2 and Section A.2.1

for more details on the procurement process.

There are three main regulatory costs of entering a generic market. First, a labeler needs to hold

an abbreviated new drug application (ANDA) approved by the FDA to market a generic drug product,

whose estimated cost is $1-$5 million (Berndt and Aitken, 2011). Second, since 2012, any company

that wants to market generic drugs for the U.S. needs to pay the Generic Drug User Fee Amendments

(GDUFA) fees each year, which amount to $178,799 for fiscal year 2019.85 The third and last part, if

sole-sourcing contracts are in place and the one to three year contracts are enforced even during supply

disruptions, sales are not guaranteed. See Section A.2.1 for further discussion of the purchasing system.

A.2. Group Purchasing Organizations (GPOs) and Procurement System

This section draws from information acquired through the reading of many health care policy reports, FTC doc-
uments considering mergers and market powers in GPO markets, official reports from the Group Purchasing
Organization Association, and an interview carried with the President of the Group Purchasing Organization
Association, Todd Ebert, on February 22 2022.

82An active ingredient is a substance used as a component of a drug to furnish pharmacological activity
83A FDF is a drug product in the form in which it will be administered to a patient, such as a tablet, capsule, solution, or

topical application
84I do not see hospitals (or GPOs) direct purchases. On the demand side, I only have data at the labeler- molecule dosage

form product-quarter level for the entire U.S. market, through Medicare Part B and Red Book Prices. Prices I use are thus
average prices over all U.S. hospitals for a given drug product

85For fiscal year 2019: ”GDUFA II stipulates that user fees should total $493,600,000 annually, adjusted each year for
inflation. For FY 2019, the generic drug fee rates are: ANDA ($178,799), DMF ($55,013), domestic API facility ($44,226), foreign
API facility ($59,226), domestic FDF facility ($211,305), foreign FDF facility ($226,305), domestic CMO facility ($70,435), foreign
CMO facility ($85,435), large size operation generic drug applicant program ($1,862,167), medium size operation generic drug
applicant program ($744,867), and small business generic drug applicant program ($186,217).” (Source: GDUFA fees
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A.2.1. Online Procurement Auctions (Request for Proposals)

In practice, GPO’s awards drug contracts using an online competitive bidding process. These are online
reverse,86 descending first-price sealed bids auctions. They generally take only one round. GPOs do not

generally post an initial price for a drug contract; it only collects Requests For Proposals (RFPs) from

interested vendors.

Manufacturer 1 (USA) Manufacturer 2 (India)

Group Purchasing

Organization (GPO)

Bids

Hospital 2Hospital 1 Hospital 3

pAWP = ∑h pGPO
h

pWAC Request for

Proposals (RFP)

Figure A2: U.S. Procurement System: Tendering

Notes: This figures depicts the hospitals’ drug procurement process in the U.S. Buyers are Group Purchazing Organizations (GPO) whose
purpose is to aggregate hospitals’ demand for drug products. GPOs organize online procurement auctions to purchase drugs, by submitting
a “request for proposals” (RFP) which contains information about estimated drug quantities required. Drug labelers (pharmaceutical firms
owning a drug’s license) observe the RFP and enter the auction if they have enough capacity to manufacture the drugs. Labelers product
drugs through plants they either own or outsource. Both manufacturing plants and labelers can be U.S-based or Foreign-based. Bid prices
submitted by labelers in procurement auctions are the “contracted” prices paid by GPOs to manufacturers (WAC price). GPOs then distribute
drug products to their member hospitals. In the data, the observed price at which hospitals purchase a drug from GPOs s called Average
Wholesale Price (AWP). It represents the average drug price over all U.S. hospitals and all GPOs, in a given quarter.

The product’s volume and the number of manufacturers in the marketplace generally determine

how much pressure the GPO can bring to bear on price. With a first-price sealed bid of one round only,

the buyer is given most of the purchasing power. Sellers do not have much opportunity to improve

their bids, while buyers have multiple alternatives from different sellers to optimize their purchases.

Under limited circumstances, GPOS may award contracts to vendors without issuing RFPs: for

instance if the manufacturer is a monopolist (some GPOs do an auction anyway), or some new manu-

facturer with innovative product (so not really for generics)

Contract negotiations for a typical tendering process follows a 3 phases approach. First, the tendering

opens by issuing a Request for Proposals (RFP). During this phase, A GPO notifies vendors of pending

requests for proposal, by publicly posting on its website the bid calendars and minimum requirements

for vendors. The GPOs’ product selection processes generally takes 6 months, and ranges from as short

86Online reverse auctions (i.e. auctions where a buyer requests several potential suppliers/sellers to make their bids to sell
one or more products) are a new frequently used e-commerce approach to purchasing and procuring goods B-2-B
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as 1 month to as long as 18 months. In a second phase, the GPO review proposals: it scores competitors

on how they meet the tendering criteria. The market claims most of the competition occurs on price,

conditional on the manufacturers holding an ANDA. In the third and last phase, the GPO negotiates

and awards contracts. GPOs widely used sole-sourcing for generic drugs, allowing only one supplier

can win the bidding process.87 This practice changed slightly since the beginning of the Covid-19 crisis,

with more dual or multi-sourcing from 2020. In situation in which dual or multi-sourcing is chosen,

there does not seem to be clear rules about how market shares are allocated. GPOs indicate contracted

quantities are awarded on a case-by-case basis and the decision to multi-source is highly “product

dependent”. The result of the post-bids ranking is privately announced to sellers.88

Most contracts between GPOs and labelers would last on average 1 to 3 years. However, member

hospitals do not have contracting obligations to purchase from the GPO. Manufacturers contracts can

be renegotiated if there is a new entrant (but not all GPOs do so), Contracts that bundle products seem

limited. Bundling would allegedly happen rarely and be restricted to products that are used together

or otherwise related. Contracts may include failure-to-supply clauses, but enforcement of these clauses

is often lacking, and some advocate that penalties are non-existent or too small. All major national

GPOs report that their contracting practices have not changed much over time, since the late 1960s.

The practice of sole-sourcing, typically associated with extra rebates and discounts, raises critical

questions regarding its potential impact on competition and market contestability. In scenarios where

sole sourcing is employed by a Group Purchasing Organization with a large market share, this approach

could conceivably cause competitors to withdraw from the market or stifle new entries. In scenarios

in which there are several GPOs with similar market shares, and each exclusively contracts with one

supplier, potentially considering backups in case of supply issues, this sourcing strategy may not be

problematic. The degree of market contestability and the credibility of supplier-side entry threats

however remain undetermined. Although these aspects fall outside the remit of the current paper, their

importance in shaping market dynamics underscores a compelling need for subsequent research to

explore these aspects.89

A.2.2. Market Structure and Concentration

GPOs are intermediary formed by hospital banding together in order to negotiate volume discounts

for buying drugs (aggregates hospitals’ demand to obtain lower prices than each individual hospital

might attain on its own). While officially, hundreds of GPOs in the U.S., the GPO market went through

many mergers over time and current market shares are concentrated among a few players.

In 2002, there were seven national GPOs with purchasing volumes over $1 billion that account

for more than 85 percent of all hospital purchases nationwide (combined purchasing power of about

87This was confirmed by an interview carried on February 22 2022 with the President of the Group Purchazing Organiza-
tion Association, Todd Ebert

88GPOs consider vendors grievance when they are not awarded a contract; they debrief the vendor on how to make
changes to increase their chances of being awarded a contract during the next RFP cycle, Sellers can moreover file a formal
grievance

89To my knowledge, there is no available data on GPO purchases and contracts, which makes detailed IO studies of the
buying side of the market challenging.
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$43 billion). The two largest GPOs accounted for about 70% of total GPO purchasing volume for all

medical products. One of the two largest GPOs had 1,569 hospital members among the U.S. nation’s

approximately 6,900 hospitals; the other has 1,469 hospital members.

In 2014, the five largest national GPOs were estimated to hold more than 90% of the market (Amer-

inet, HealthTrust Purchasing Group, MedAssets, Novation, and Premier). Since 2016-2017, the top four

GPOS with the most affiliated staffed beds are Vizient, Premier, Inc., HealthTrust Purchasing Group

(HPG), and Premier-ASCEND.90

On the purchasing side, GPOs are thus highly concentrated; the largest 3-4 GPOs now account

for 90% of the market. The FDA claims that market power of GPOs may have reduced prices for

health systems but has also contributed to a “race to the bottom”.91 The pursuit to offer drugs at

the lowest price possible would have decreased generic sponsors’ profitability, especially in the case

of injectables, which are costly to manufacture. Importantly, because generic drugs are bioequivalent

and exchangeable, there is no mechanism in the purchasing system to reward high-quality production,

even though the FDA asserts that differences in the quality of manufacturing practices exist and are

inextricably linked to shortages. Concentration among intermediaries in the drug purchasing system

is a likely factor in driving the prices of some generics so low that generic sponsors do not see them as

profitable.

A.2.3. GPOs’ members and funding system

GPOs are paid both by member hospitals in the form of an annual membership fees and by drug

manufacturers in the form of an administrative fee (CAF) that are capped to 3% of hospitals’ drug

purchases - aka discounts or rebates (the bulk of rebates is for branded drugs). 35 to 70% would then

go back to hospital members.

• CAF are the main source of revenues for GPOs (92% of their revenue in 2012). They are based on

a percentage of the purchase price that healthcare providers pay for products obtained through

GPO contracts. The fee is only paid when a GPO’s provider-member utilizes a GPO contract.

Limited to 3% of hospitals’ purchases (“safe harbor” regulation of 1996In order to not be con-

sidered a kickback, administrative fees must be disclosed in an agreement between the GPO and

each participating member. The agreement must state that the fees are 3 percent or less of the

purchase price of the product (Social Security Act, 1986), many talk about ”legalized kickbacks”

or ”pay-to-play” fees). Lots of debates about whether these admin fees charged to suppliers are

anti-competitive (some argue this funding structure would create a principal-agent problem and

motivates GPOs to search for higher prices,as their compensation increases when prices increase;

others argue that GPOs’ competition prevent this).

• A percentage of these vendor-fees are often passed to the GPOs’ hospital members through dis-

counts or rebates (between 37% and 70% of the fee in 2012 —a total of $1.6 billion). The extent

90See Definitive Healthcare, Top 10 GPOs by staffed beds (Feb. 2023).
91Note that these claims have to my knowledge never been assessed quantitatively and industry reports do not reach a

common ground on the subject
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to which hospitals are reporting this revenue is not known because this has not been reviewed

by HHS since 2005, and CMS officials stated that the agency has not specifically identified this as

information that should be routinely audited. Medicare payments could be affected if hospitals

do not account for revenue they receive from GPOs, which they are required to report as a reduc-

tion in costs on their cost reports. Burns and Lee (2008) estimate that GPO membership fees are

”non-negligible”: $300-$600k for a small hospital system anchored around a teaching hospital.

In theory, hospitals can contract with more than one GPO to do this purchasing, and can also

purchase directly from drug manufacturers. In practice, it seems it almost never happens (GPO’s

contracting efficiency) and hospitals generally contract with different GPOs for different products (i.e.

source all of a given drug d through a single GPO). Not all GPOs allow their members to belong to

other national GPOs (among the 2 largest, one does and the other does not).

A.3. Key Features of Shortages: The Case of Sterile Injectable Markets

A.3.1. Shortages Definition

A shortage is an excess demand

P

Q
0 Q∗

P∗

P′

QS QD

S

D
Shortage

Figure A3: Definition of a Shortage

Notes: A shortage is defined as an excess demand, in contrast with surplus that is defined as excess supply. At price P′,
quantity supplied QS is below quantity demanded on the market, QD. Basic economic theory tells us that, in a perfectly
competitive market,shortage spells should be transitory; after a supply disruption (demand exceeds supply), prices should
increase and provide an incentive for existing and new suppliers to increase production until there is enough supply to meet
demand again (market equilibrium).
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(a) Which Products are the Most Affected by Shortages?

(b) Share of U.S.-Marketed Drugs in Shortage, by Drug Category

Figure A4: Size of Affected Markets

Notes: Panel A4a reports which types of drug products are affected by shortage, splitting all drugs from the shortage list into different
groups. The left pie compares drugs short by form-type (injectable versus oral or topical products). 82% of drugs affected by shortages are
in injectable form. The right pie splits products by patent type: brand, generic (off-patent) and branded generics (generics having built a
brand name). 83% of shortage-affected products are generic drugs. Panel A4b computes the share of all U.S.-marketed drugs that went short,
across different drug categories. The list of all U.S.-marketed drugs is from the FDA’s Orange Book (FDA’s list of approved drug products
with therapeutic equivalence evaluations). While shortage events only affect 9% of all U.S.-marketed drugs and 12% of all generics over the
period 2004-2019, the problem becomes more acute if we focus on smaller market segments. 46% of sterile injectable drug products (defined
at the molecule-form level) marketed in the U.S. went short at least once over the period, and this number increases to 56% if we focus on
the generic versions of injectable drugs. The major share of generic sterile injectables sold in the U.S. are thus impacted by shortage spells,
heavily affecting hospitals’ patients relying on drugs within this category. Source, details: I use both the January 2020 version of the Orange
Book and historical Orange Book records to get the list of marketed drugs in each year over the period 2004-2019. Inside the Orange Book
data, I extract the list of i) all generic drugs, ii) all sterile injectable drugs, iii) all generic, sterile injectable drugs marketed in the U.S. I then
match these lists to the drugs belonging to the exact same category within the UUDIS shortages data. I then compute, within each category
of drug, the share of the market affected by shortages over the period 2004-2019.
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Figure A5: Reasons for U.S. Shortages

Notes: Drug shortages data were provided by Erin Fox from the University of Utah Drug Information Service (UUDIS). Reasons for shortages
are provided to the FDA or the American Society of Health-System Pharmacists (ASHP) by pharmaceutical companies or distributors directly,
and are verified by the UUDIS. It is not compulsory to report a cause for a shortage and 40% of shortage events do not report a cause. Shortage
reasons are generally very detailed in the data and were aggregated into 6 broader categories. Among those shortages that report a cause,
68% are driven by ”Manufacturing-quality issues, 18% are due to ”discontinuations or business decisions”, 6% are due to ”raw material
shortages”, 4% to ”regulatory problems”, 3% to ”increased demand” and 1% to ”natural disaster”

Figure A6: Distribution of Injectable Drug Ages

Notes: This figure plots the distribution of sterile injectable drug ages. Drug age is measured as the number of years since the first marketing
application for a drug in the FDA’s Orange Book. In the U.S. branded-drug patents generally have limited life-span (typically twenty years,
but most drugs lose their exclusivity after 7 years, and the first approved generic drug receives 180 days of exclusivity against additional
generic entry). This plot shows that most injectable products are old, off-patents products. Older generic drugs are generally less profitable
than newer, more innovative products.
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A.3.2. Key Features of Injectable Drug Markets

Drugs in Shortage have High Fixed Costs of Production and Low-Margins. With the institutional-

ization of near perfect substitutability for generic drugs, buyers (hospitals or pharmacies) consider all

generic versions of a drug to be perfect substitutes. The product is generally believed to be of sufficient

quality if it is on the market. Because the market cannot directly observe and reward quality, buyers go

for the lowest-priced drug.92

Sterile injectable drugs display many specific features that seem prone to crystallize the main issues

encountered on generic drugs market. Compared to other generic drugs, sterile injectable products

must be produced in highly specialized facilities with dedicated lines.93 These injectable drugs are also

harder to store, and most need to be refrigerated or are sensible to lights.94 These high operational costs

contribute to increase fixed production costs for the manufacturer. Markups not being high enough to

cover fixed costs for this type of drugs may in turn explain the lack of manufacturer investments in

facilities. There are indeed a few reported cases in the industry of some of these drugs selling at a loss

(negative markups), while some of the newest generic drugs sell for hundreds or thousands of dollars

(FDA, 2019). Low-profit generic medicines have been flagged as especially likely to suffer shortages,

and many of these generics are sterile parenteral drugs. As an example, the cost of Ondansetron vial (in

repeated shortage spells since 2008) is inferior to $1 for 42mg/2 Ml (less than $2 per vial), which may

just not be a sustainable price for a medicine (Fox, Sweet, and Jensen, 2014). This is consistent with

estimates I get from my data: I find that the mean price per unit of product across sterile injectables

that goes into shortage is $1.3 (based on quarterly Average Wholesale Prices from the Redbook).

The slim profit margins of generic sterile injectable drugs created low incentives for manufacturers

to shell out factory updates in order to avoid supply disruptions. Low margins directly encourages

manufacturers to keep costs down by minimizing quality-related investments or by keeping low

inventories to avoid losses due to production surplus.95 In the case of sterile injectables, there is

moreover very little margin for errors in the manufacturing process, contrary to drugs in tablets or

capsules. Some of the drug shortages reported in the U.S. have been traced to facilities that have

been in operation since the 1960s with almost no factory improvements GAO (2016). Moreover,

re-purposing existing factories to manufacture antibiotics or cancer drugs can take years. This would

also explain why there is no branded drugs in shortage: brand-name drug makers have the resources

to conduct extensive marketing promotions and ad campaigns. They also have incentives to keep

92Stakeholders mention that a few phone calls are often enough for wholesalers to switch suppliers and reduce prices.
Only relentless cost-cutting could allow to survive such a fierce price competition while making any sort of profit

93Production must take place in a ”clean room” environment to make them perfectly sterile
94These factors may explain why supply disruptions are not easily corrected or why hospital pharmacists may not be

easily able to stockpile these medicines in prevision of shortages.
95The FDA Commissioner Gottlieb in July 2018 said that “the low profit margins, and the significant cost of manufacturing

these complex drugs, has resulted in consolidation in the industry. The only way to produce these low-margin products
profitably is to manufacture them at tremendous scale. This has resulted in fewer and fewer manufacturers for certain key
products. (...) It has also resulted in an under-investment in manufacturing, especially of sterile injectable drugs. Unless drug
makers are investing in their manufacturing facilities, it can create conditions that give rise to production stoppages in order
to fix manufacturing problems”.
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innovating and investing in manufacturing quality (which allow them to quickly adjust to potential

supply or demand shocks).

Concentration and Offshoring

At the same time, high fixed costs of production means that this type of drugs has probably bene-

fited the most from economies of scale and scopes resulting from concentration of specialized factories.

At nearly every point in this system, the market has become more concentrated. The FDA estimates

that 40% of sterile injectable drugs sold in the US have just one manufacturer, and 2/3 have 3 or less

manufacturers (FDA, 2019). These figures are consistent with my data: I find that the median number

of manufacturers for sterile injectable drugs, as measured by manufacturing facilities, is 1.9. But the

consequence of this concentration is that one glitch on the manufacturing line in the facility that makes

a drug can trigger a worldwide shortage. For a note on collusion of generic drugs, see Appendix A.5.

Among manufacturers, concentration is evident among all 3 actors. First, although policy makers

have eliminated many barriers to generic entry, there remains high concentration in the supply of

generic products. Drug shortages are more likely to occur in markets with only 1 to 3 generic sponsors.

Second, because of consolidation of suppliers, competing generic sponsors often rely on a single active

ingredient supplier. Third, it is increasingly common for a single contract manufacturer to produce

the final dosage forms for all generic sponsors marketing a given product. Market concentration is the

underlying reason why markets are so slow in responding to shortages. When production is halted

for quality control problems (eg, the sterile injectables produced by the manufacturing facility are non-

sterile or contain metal particulates), there is no alternative facility available.

The FDA claims that even though the market power of buyers (GPOs) may have contributed to

lower prices for health systems, it also led to a ”race to the bottom” which has decreased generic

sponsors’ profitability, especially in the case of costly-to-manufacture injectables96. Crucially, because

generic drugs are bioequivalent and considered perfectly exchangeable, there is no mechanism in the

purchasing system to reward high-quality production even though FDA asserts differences in the

quality of manufacturing practices exist and are inextricably linked to shortages.

Two main factors may deter entry and explain the high concentration of the market. Firstly, com-

pared to most commonly used painkillers tablets and pills, sterile injectable drugs serve relatively small

markets (demand for these products is limited to patients in hospitals). Associated with high fixed costs

of production and low-profit margins, this may not make it a very attractive market for private man-

ufacturing firms. Secondly, the necessity to have highly-specialized facilities makes entry harder; it

seems manufacturers are not able to quickly rotate production of these generics between plants when

disruption occurs. These seem to be the two main factors preventing the market to quickly adjust

96 Kaygisiz et al. (2019) discuss why concentrations does not lead to higher prices on the market. In addition to the threat of
contestability, the current bilateral oligopoly (where both suppliers and buyers are concentrated) makes the market resembles
undifferentiated Bertrand competition, where prices are close to marginal costs in spite of there being only a small number of
competitors. They argue the intensity of price competition would have helped to establish and maintain downward pressures
on generic drug prices.
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following disruption (see Appendix A.5 for more details).

Table A1 compares concentration of sterile injectables that went into shortage at least once over the

period 2006-2019 to sterile injectables that never went into shortage, using Medicare Part B Spendings

data from CMS (see Appendix F.3 for details on using Medicare Part B data to build Medicare Market

Shares). Medicare sales are measured for each drug by matching drug names or drug codes (NDCs)

to Healthcare Common Procedure Coding System (HCPCS). Sterile injectable drugs that experience

shortages over the period 2006-2019 seem more concentrated (they have on average less labelers) and

they represent a smaller part of total market sales and shares for sterile injectables.

All these features of the market may encourage manufacturers to keep costs down, either by

minimizing quality-related investments or by keeping low-inventory to avoid losses.97

The problem has been deepened by the re-positioning of factories to India and China, where recalls

of poor-quality products are common.98 Because raw materials and production are generally cheaper

in developing countries, manufacturers of active pharmaceutical ingredients (API) have increasingly

been based in India or China over time. Based on the FDA dataset on manufacturing facilities location

(GDUFA), 60% of finished dosage forms (FDF) and 87% of base ingredients (API) are made at foreign

facilities. China alone produces 40% of the active components (APIs) of U.S medicines; most of the

final manufacturing of the drugs occurs in India (80% of FDFs consumed in the U.S. are imported from

India). The FDA says that pharmaceutical imports have more than doubled in the past decade.

The lack of regulatory control of the FDA on foreign-based plants certainly contributes to quality-

issues: the FDA inspection records indicate that the agency has been inspecting foreign-based drug

manufacturing facilities about once every 14 years, against every two-and-a-half years for U.S.-based

facilities.99 In 2016, an estimated 33% of foreign facilities had never been inspected (as many as a thou-

sand plants) (GAO, 2016). In Figure A7, I report the relative share of warning letters received by each

country over the period 2008-2020. After carrying facility inspections, the FDA issues warning letters

to drug manufacturers when it identifies a violation, such as poor manufacturing practices. Using re-

stricted warning letters data I obtained from the FDA and adjusting for inspection frequencies, I find

that U.S. facilities only account for 16% of warning letters, while this share reaches 40% for Indian and

Chinese based-facilities (22% for Indian-based facilities and 18% for Chinese-based facilities). About 60

percent of FDA inspections of pharmaceutical plants in the Asia-Pacific region result in ”Form 483s”

— flags for findings that might violate U.S. quality standards.

97The market has long been characterized by “just-in-time” production. Manufacturers historically never built more than
one to two weeks of product stocks.

98As an example among many, contamination by a possible cancer-causing chemical was discovered in 2018 in a Chinese
factory making Valsartan, the active component in a blood-pressure medication taken by millions of people. That factory
made half of the world’s supply of Valsartan. This contamination led to the withdrawal of dozens of drugs in at least 22
countries, mostly in the U.S. and Europe.

99The FDA has several foreign offices whose purpose is to facilitate inspection, but due to resource constraints, the agency
relies on a risk-based approach in oder to select plants for inspection. The FDA’s Center for Drug Evaluation and Research
(CDER) Director Woodcock estimated in 2017 that the FDA would need another $225 million annually to inspect every foreign
drug plant every other year
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Figure A7: Relative Share of Warning Letters by Country, 2008-2020

Notes: This figure plots the relative share of warning letters sent to manufacturing facilities by the FDA. These warning letters are sent
to facilities post-inspection, when the FDA finds that a manufacturer has significantly violated FDA regulations (see details on the FDA’s
website. Shares are computed by taking the ratio of warning letters to the number of facilities by country, weighting by the location-specific
inspection rate. Historical warning letters data was obtained through a FOIA to the FDA. Recent warning letters are publicly available and
can be found here

A.4. Most Injectable Drugs Serve Small Markets

Using Medicare Part B Spending data from CMS (see Appendix F.3), I compare sales for sterile

injectables that went into shortage to sterile injectables that did not. Two main measures of demand

are used: 1) annual number of services billed (allowed services) and 2) total annual reimbursements

by Medicare (allowed charges). Figure A8 displays that sterile injectables in shortage follow overall

a similar pattern of sales compared to similar drugs that never went short (at the exception of the

top right panel in which sales seems relatively “flatter” for drugs that went into shortage). If overall

injectable products have low market sizes, it however does not seem to be the main driver of shortages.

Table A1: Comparing Concentration of Sterile Injectables by Shortage Status

Labelers per Quarter Total billable units per NDC Share billable units per NDC

Shortage Dummy -4.8∗∗∗ -53619∗∗∗ -.0285∗∗∗

[.103] [309] [.00146]

R2 0.339 0.338 0.005
Observations 170,137 175,057 174,984

Notes: Robust standard errors in parenthesis. This table uses a balanced panel of 333 Generic Sterile Injectable Drugs, 2006 to 2019. 234 drugs
went short at least once over 2007-2019; 99 did not. The shortage dummy is equal to one if the drug goes into shortage at least once in my
sample. Using the total number of drug units billed each quarter under Medicare Part B, we compute each labeler’s total sales and share of
sales for a given drug. We also compute the total number of labelers for each drug as measured by unique labeler codes from the Medicare
Part B data. This table simply compares difference in means between the two groups, using an OLS regression.

73

https://www.fda.gov/inspections-compliance-enforcement-and-criminal-investigations/warning-letters/about-warning-and-close-out-letters
https://www.fda.gov/inspections-compliance-enforcement-and-criminal-investigations/warning-letters/about-warning-and-close-out-letters
https://www.fda.gov/inspections-compliance-enforcement-and-criminal-investigations/compliance-actions-and-activities/warning-letters


I then regress several measures of shortages on annual Medicare demand for a drug and on share

of foreign-based manufacturers. Results are displayed in Table A2. I find that drugs capturing a higher

share of total annual allowed Medicare services are on average less likely to be in shortage at any point

in time. Drugs that capture a higher share of demand thus seems to be less likely to go short (note

that coefficients on length of shortages and probability that a new shortage arises are not significant).

However, when controlling for the share of the drug that is offshored, annual demand for the drug

becomes insignificant. In column (2), the coefficient on the share of foreign manufacturers is positive

and strongly significant (0.226). This coefficient becomes itself insignificant once we control for the share

of foreign facilities that are specifically based in Asian locations. The share of production facilities that

is Asian-based thus seems to be the most predictive of shortage probability at the drug level.

Table A2: Probability of shortage on Medicare Demand

Dependent Variable: P(Shortage=1) P(New Shortage=1) Length Shortage (Days)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Log Annual Allowed Services† -.03367∗∗∗ -.0239∗ -.02869 -.00572 -.00724 -.00893 -27.25 31.89 42.94
[.00824] [.01291] [.0182] [.00438] [.00683] [.00968] [27.7] [39.5] [40.98]

Share Foreign Facilities .2259∗∗∗ -.04195 .05414 -.01482 351.8∗ -345.7
[.07386] [.129] [.03745] [.05476] [187.1] [419.7]

Share Asian Facilities .3607∗∗ .09219 885.2∗

[.1479] [.0694] [448.1]

St. Dev. .4962 .5562 .7109 .2636 .2942 .3782 1017 1098 1139
Year & Drug Fixed Effects ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Beta Coefficient -.2614∗∗∗ -.1856∗ -.2227 -.06405 -.08116 -.1001 -.09635 .1128 .1518
[.06398] [.1002] [.1413] [.04906] [.07654] [.1085] [.09795] [.1396] [.1449]

OLS Coefficient .01229∗∗∗ .01606∗∗∗ .01022∗∗∗ .00114 .00094 -.00281 70.28∗∗∗ 105.2∗∗∗ 103∗∗∗

[.00208] [.00294] [.00376] [.00141] [.00188] [.00264] [8.647] [11.86] [11.7]

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01. Robust standard errors in parentheses. Balanced Panel of Generic Sterile Injectable
Drugs, 2004 to 2019. All regressions include drug and year fixed effects. † Annual Number of Allowed Services, Drug Total
(in log). Data from CMS, Medicare Part B National Summary Data File, in 2010 dollars.
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Figure A8: Binscatters: time variations of demand for drugs (in dollars and service counts)

Notes: These binscatter plots regress different measure of drug sales on year and shortage dummies. The top left panel plots the annual number of allowed services for a drug, in
log. The top right panel plots the same variable in share (share of annual Medicare Part B Demand represented by the drug). The bottom left panel plots annual allowed charges,
in log and the bottom right panel plots the same variable in share of total Medicare demand. The data is from CMS, Medicare Part B National Summary Data File. The sample
consists of 333 sterile injectable drugs, 234 of which went into shortage at least once and 99 of which never went into shortage over years 2007-2019.
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A.5. Collusion and Contestability in Generic Injectable Drug Markets

A.5.1. Collusive Practices

Even though generic drug markets are no longer protected by patents, many may not be large enough to

attract the number of competitors needed to achieve marginal cost pricing (Conti, Berndt, and Murphy,

2017). Some players have actually deviated from the low-pricing strategy in recent years, as empirical

evidence that generics are not sold at marginal cost in perfectly competitive markets have arisen: since

2010, 20% of U.S. generic or off-patent molecules have experienced a sudden price increase of more

than 100% (GAO, 2016b). The price of Pyrimethamine, an anti-parasitic developed in the 1950’s, was

infamously changed overnight from $13 to $750 per pill (Pollack, 2015). Most of the generic drugs

under scrutiny for collusive agreements however do not seem to coincide with those that are the most

often going into shortages, that is sterile injectable drugs. Cuddy (2020) uses data on collusive firm

and supply contract identities from District Court case files from a 2019 indictment. She estimates that

among the hundreds of generic drugs accused of collusive conduct in her data, not more than 2 or

3 are injectable drugs. Consequently, a key assumption of her model is that there is a unique drug

production technology, for pills (i.e. not injectable drugs). Most of collusive drug markets are focused

on ”newer” and generally more profitable generic drugs.

While collusion does not appear to be a major feature of the generic sterile injectable drugs market,

assuming a competitive or collusive conduct behavior may not be necessary to assess that the average

sterile injectable drug displays low-profit margins.

A.5.2. Contracting Practices and Market Contestability

In fiscal year 2012, in response to the peak in shortages and to solve the traceability issue on the

market, the FDA enacted the Generic Drug Users Fee Act (GDUFA).100 The main goal was for the FDA

to know the geographical location of generic drug manufacturer: any foreign-based facilities wishing

to produce a finished dosage form or its based ingredients must now register with the FDA and pay

an annual fee in order to receive an approved ANDA. But this procedure has several pitfalls. Firstly,

if manufacturers are required to provide their exact address, they have however no obligations to

list the drugs they produce. Secondly, firms can pay the GDUFA fee without actually producing the

drug. This has important implications for market competition: many generic molecule markets may

actually be contestable, whereby firms hold an option to enter or re-enter. In a contestable market,

pricing outcomes may seem indicative of highly-competitive markets, even though the actual number

of competitors is small, because the threat of entry disciplines incumbent firms. On the generic drugs

market, it means that once a manufacturer receives an approval for its ANDA, it can retain indefinitely

even if it temporarily discontinues production. The threat of (re)entry by (temporary) exiting firms

might facilitate contestability and discipline prices. More economic research is necessary to investigate

100The GDUFA I, enacted in 2013, explicitly mandated that facilities, sites and organizations involved in the manufacture
of generic drugs provide self-identification information to the FDA annually between May 1 and June 1. This act had two
main purposes, according to the FDA: 1) to assist in setting annual facility fee amounts, and targeting inspections; 2) self-
identification was a central component of an effort to promote global supply chain transparency
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the potential role of the GDUFA I legislation in 2013 and the GDUFA II in 2017 in affecting temporary

or permanent exit.

Eventually, low profit margins of generic drugs may be related to predatory pricing and lack of

”failures to supply” clauses in contracts. In its Drug Shortages Report (FDA, 2019), the FDA relays

discussions with stakeholders who mentioned that current contracting practices create a high level

of business uncertainty, as they generally do not guarantee that a certain volume of products will be

purchased at an agreed upon price. Stakeholders mention that contracts often contain clauses that leave

manufacturers vulnerable to predatory pricing from competitors that are willing to undercut them to

obtain market share, even at unsustainable prices. As a consequence, generic drugs sponsors may not

have resources to invest in manufacturing or redundant capacity, which is facilitated by the absence of

”failures to supply clauses” in contracts. Such contracts might however be difficult to enforce due to

asymmetries of information; they may also encourage the buyer to create a shortage by hoarding, thus

receiving a penalty payment from the supplier. Competing suppliers might also voluntarily hoard in

order to create a shortage and then supply the product when prices rise.

A.5.3. Entry and Labelers-Contractors Relationships

If supply of products is a problem, especially in Asian-based facilities, why are U.S. generic pharmaceu-

tical companies (the ”sponsor” or ”labeler” of a drug) not contracting with more than one production

facility, or trying to switch manufacturers? Where is the friction? First, it is important to notice than

many of these drugs market do not have a U.S.-based labeler, as generic manufacturing firms have

increasingly discontinued production of the less profitable drugs in their portfolios.
Here are some quotes from major U.S. generic drug manufacturers: “Right now our energy is focused primarily on the
U.S. oral solids business...It’s a unique situation. There are significant pricing declines. At least in the medium term, we don’t
see a shift to that situation, so we’re assessing how best to optimize that, given that dynamic.” (Comments made during Q4,
2017 earnings call before announcing proposed sale of core U.S. generics business in Sept. 2018) - Novartis (Sandoz)
Q4, 2017. Another quote from Teva: “The overall situation on U.S. generics and pricing ...we had a consolidation on the
buyers side and you’ve had a situation where suppliers may be accepting of lower prices because they used to have a healthy
margin...and if you take a race to the bottom on price...the only way out of that negative spiral is of course to stop it ... About
80% of the product we will get out of and they will move to other suppliers and about 20% of the product we will see an increase
in price” - Teva Q1 2018

Many U.S. labelers are foreign-based and owned companies, selling their drug products on the U.S.

market. Many generic drugs that received an ANDA approval in the U.S. are thus directly sponsored

by foreign companies - contract manufacturing organizations (CMO), labeler or downstream manufac-

turers.101 This point aside, the high amount of market concentration and high entry and switching costs

on the market may give pharmaceutical companies less options to switch suppliers of raw ingredients

or finished drug forms. Yet another issue is that it seems hard to purchase for quality on the market,

101There is a large heterogeneity in how and where ANDA holders manufacture generic drugs : in-house for both API and
FDF, at facility site same as or different from headquarters, in-house FDF but outsourced API, outsourced both API and FDF,
and not an ANDA holder but instead just a contract manufacturer to other firms who were ANDA holders. There is also
increased outsourcing to off-shored entities
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meaning that labelers also do not have information on which facilities are available to produce a partic-

ular drug and what is their history of supply disruptions. The FDA makes warning letters and records

on more than 483 inspections public, but the names of drugs are redacted. There are no requirements to

disclose which company actually makes a product, or manufacturing site. Thus, purchasers (hospitals,

pharmacies, but also labelers) cannot always follow the data to take buying decisions.

A.6. FDA’s Regulatory Procedures on Drug Manufacturing Inspections

Upon a comprehensive evaluation of pharmaceutical manufacturing units, the U.S. Food and Drug

Administration (FDA) systematically categorizes its findings into three distinctive classifications: ”No

Action Indicated” (NAI), ”Voluntary Action Indicated” (VAI), or ”Official Action Indicated” (OAI).

An NAI classification signifies that the inspection found no concerning issues or practices, or if

found, they were minor and did not warrant additional regulatory measures. A VAI designation

indicates that while there were certain issues discovered, the FDA is not recommending or initiating

any administrative or regulatory measures at this time. An OAI classification suggests that the FDA

will suggest administrative or regulatory measures.

Post-2012, there has been a discernible amplification in the frequency of inspections, particularly

focusing on facilities perceived as high-risk. This increment in oversight led to an uptick in the identifi-

cation of regulatory infringements, predominantly within overseas facilities. It’s pertinent to note that

these international facilities, prior to the institution of the FDASIA and GDUFA regulatory frameworks,

had received fewer inspections compared to domestic units. Importantly, the majority of these interna-

tional assessments were executed with prior notification. Yet, irrespective of geographic demarcation,

in excess of 90% of evaluations culminated in classifications deemed satisfactory (NAI or VAI) with the

sole exception being facilities located in India.

Both international and domestic pharmaceutical manufacturers are uniformly subjected to prevail-

ing regulatory criteria, specifically, adherence to the Current Good Manufacturing Practices (CGMPs).

In scenarios where a manufacturing unit demonstrably fails to comply with CGMP standards upon rig-

orous examination, the FDA possesses a variety of regulatory instruments to induce corrective actions.

This encompasses the issuance of warning letters, initiation of import alerts, provision of injunctions,

and the invocation of seizures. Should ensuing evaluations confirm sustained non-adherence, the FDA

has the authority to implement more stringent measures.

In instances where a foreign manufacturing site shows significant enough issues to receive an OAI

classification, the FDA can issue an Import Alert, effectively preventing drugs from that facility from

entering the U.S. Typically, a facility will be removed from such an Import Alert once a follow-up

inspection confirms that the issues have been resolved and the facility is in line with CGMP standards.

Not every pharmaceutical product can be tested before entering the U.S. market. In practice, while

the FDA does perform thousands of tests annually, only about one percent of these drugs do not meet

the set quality standards. Considering the sheer volume of drug products (for reference, in 2018, there

were almost 186 trillion tablets and capsules in the U.S. market), testing each batch is not practical.
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Appendix B - Additional Reduced-Form Results

B.1. Size of the Impacted Market

Table B1: Share of Generics and Sterile Injectables in the FDA’s Orange Book Data

Sterile Injectable

Generic No Yes Total
Freq. Percent Freq. Percent Freq. Percent

No 3,584.0 19.7 1,642.0 30.3 5,226.0 22.1

Yes 14,653.0 80.3 3,772.0 69.7 18,425.0 77.9

Total 18,237.0 100.0 5,414.0 100.0 23,651.0 100.0

Notes: This table records the share of generic and sterile injectable drugs among all U.S.-marketed drugs, as recorded by the
FDA’s Orange Book (FDA’s list of approved drug products with therapeutic equivalence evaluations). I use both the January
2020 version of the Orange Book and historical Orange Book records to get the list of marketed drugs in each year over the
period 2004-2019. The first row reports the frequency and percentage of branded (non-generic) drugs, while the second row
reports generic drugs. The first two columns are for non-sterile injectable drugs, and the second two for sterile injectable
drugs. The last two columns report the total frequency and share of generic and non-generic drugs, over all form-types.

Figure B1: Impacted market size

Notes: This figure plots the frequency (number above each bar plot) and share of all U.S.-marketed drugs, by drug type.
The list of all U.S.-marketed drugs is from the FDA’s Orange Book (FDA’s list of approved drug products with therapeutic
equivalence evaluations). I use both the January 2020 version of the Orange Book and historical Orange Book records to get
the list of marketed drugs in each year over the period 2004-2019. The first four bar-plots sum to one-hundred, and split
U.S.-marketed drugs between brand, generic and injectables versus non-injectables. Within the Orange Book, 15% of drugs
are non-injectable branded drugs, while only 7% of branded drugs are injectables. 62% of drugs in the Orange Book are
generic, non-injectable drugs, while generic injectables represent 16% of all U.S.-marketed drugs. The last two bars sum to
one hundred, and simply report that 23% of all U.S.-marketed drugs are injectable formulations.
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Figure B2: Time Series: Number of Approved Generic Patents (ANDA) in the Orange Book

Notes: This figure plots the number of approved new generic applications (ANDA) in the U.S., by year. The list of all
U.S.-marketed drugs is from the FDA’s Orange Book (FDA’s list of approved drug products with therapeutic equivalence
evaluations). The yellow line plots ANDA for sterile injectable drug products, while the green line reports ANDAs for all
other type of drugs.

B.2. Pricing

There is currently no nation-wide regulation of pharmaceutical prices in the United States. There is

also no international reference pricing rule linking the U.S. market to other markets, nor any parallel

trade of drugs with other countries as there is within Europe (Dubois and Saethre, 2018). For the time

frame of this study (2002-2020), drug prices in the U.S. are therefore determined independently from

other markets.

B.2.1. Details about the RED BOOK Pricing Data

Prices used in this paper are from the IBM Micromedex® RED BOOK® Historical Pricing Tables, which

provides pricing that has been reported to the RED BOOK by drug manufacturers. Only inactive prices

are delivered in the Historical Pricing Table. For active prices, I web-scrapped the full active RED

BOOK databases. The RED BOOK data contains a drug product name and national drug code (NDC),

labeler name, effective date, a manufacturer CMSID (a unique identifier for each manufacturer) and a

package CMSID (a unique identifier for each package). The main price measure in the RED BOOK is an

Average Wholesale Price (AWP).102 This nationally recognized suggested wholesale price corresponds

102The Average Wholesale Price (AWP) as published by IBM Watson Health is, in most cases, the manufacturer’s suggested
AWP and does not reflect the actual AWP charged by a wholesaler. IBM Watson Health bases the AWP data it publishes
on the following: (1) AWP is reported by the manufacturer, or (2) AWP is calculated based on a markup specified by the
manufacturer. This markup is typically based on the Wholesale Acquisition Cost (WAC) or Direct Price (DIRP), as provided
by the manufacturer, but may be based on other pricing data provided by the manufacturer, or (3) Suggested Wholesale Price
(SWP) is reported by the manufacturer. When the manufacturer does not provide an AWP, an SWP, or a markup formula
from which AWP can be calculated, IBM Watson Health will calculate the AWP by applying a standard 20% markup over the
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to the price paid by providers (hospitals, pharmacies) to wholesalers.103 This dataset also includes

information about the Wholesale Acquisition Cost (WAC), which is the price paid by wholesalers to

manufacturers, and the DIRP or DP (Direct Price) paid by providers (hospitals) to manufacturers (man-

ufacturer pricing to direct-buying retailers)

B.2.2. Length of Price Validity

Even though the RedBook updates prices quarterly, most prices display some noticeable price-rigidity

in Figure B3. The median length of price validity in the data is 222 days (mean 434 days), using years

1990-2019 for 222,655 NDCs.

Figure B3: Distribution of Drug Prices’ Validity in the FDA’s RedBook

Notes: This figure plots the distribution of the length of price validity at the National Drug Code (NDC) level, for all drugs
listed in the FDA’s RedBook data. The data is the historical version of the RedBook prices (1990-2019), which contains
222,655 NDCs. A NDC represents a drug at the labeler-dosage-form-package type level. I report two key prices: the Average
Wholesale Price (AWP), which is the price paid by hospitals to GPOs, and the Wholesale Acquisition Cost (WAC), which is
the price paid by GPOs to drug labelers. Price-rigidity is relatively large: despite quarterly updates of drug prices, the median
length of price validity in the data is 222 days (and the mean 434 days).

B.2.3. Pricing and Shortages

Matching Red Book Prices to Drugs in Shortages. In this section, prices from the Red Book are

matched to the UUDIS firm-level shortages (i.e. shortages defined at the NDC 5-4-2 level). Using the

manufacturer-supplied WAC. If a WAC is not provided, the standard markup will be applied to the DIRP.
103The term ”manufacturer” as used in the REDBOOK includes manufacturers, distributors, repackagers, and private

labelers. The term ”provider” includes retailers, hospitals, physicians, and others buying from the wholesaler or directly
from the manufacturer for distribution to a patient
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historical Red Book data only, 5672 unique NDC 5-4-2 from the shortage data were matched, which

represents 70% of unique NDC numbers (2434 NDCs not matched). Using both the historical data and

the Red Book Pricing data I web-scrapped from the current Red Book files, only 247 NDCs out of 8106

from the shortage data are not matched with prices, so only 3%. 97% of the drugs from the NDC-level

shortage list can be linked to pricing data from the Red Book. If we try to match each NDC-year-quarter

observation from the shortage data exactly, 393,132 observations over 688,407 are matched with prices,

so 57% of the shortage data has exact pricing information at the drug NDC-year-quarter level. Note

that a drug, as defined by a molecule-form, may be active under many different NDCs over the years

(a NDC 5-4-2 is a National Drug Code that defines a drug at the labeler-dosage-form level). NDCS at

the 5-4-2 level may thus not be present for all year-quarters in my data, as firms enter and exit over the

period. If during its period of validity, a given NDC-5-4-2 does not display price updates in a given

quarter in the Red Book, I use price information from the last available quarter.

Table B2 provides summary statistics at the manufacturer-drug level (NDC 5-4-2) for all drug prod-

ucts listed in the manufacturer-level shortage data from the UUDIS (for more details about how this

information was extracted, see Section F.2). 17.4% of NDCs from the shortage list becomes affected by

a merger between 2002 and 2020. 42.5% of these NDCs get discontinued. The average NDC goes short

6.52 times from 2002 to 2020, 3 time in median.

Table B2: NDC-Level Shortages

N p50 mean sd min max p25 p75

Merger 18,966 0 .174 .379 0 1 0 0
Discontinued 18,966 0 .425 .494 0 1 0 1
Number of Shortages by NDC (5-4-2) 18,966 3 6.52 7.45 1 37 1 8

Notes: NDC level shortages (5-4-2 format), cross-section from January 2002 to April 2020. Data is from the UUDIS. Information
on mergers and discontinuation of products has been extracted from Word Files by the author using text mining techniques
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Table B3: Monthly Unit Price of Drugs from the Shortage List

Price type p50 mean sd min max p25 p75 N

Brand AWP 3 28 64 .0051 .64 17 487 238,357
WAC 3 22 50 .0043 .63 15 415 142,635

Generic AWP 1.1 7.7 30 .0049 .32 3.7 481 617,110
WAC .48 5.4 21 .0041 .12 2.3 362 285,328

Non-Parenteral AWP 1.2 7.9 31 .0061 .45 3.6 482 395,463
WAC .6 7.4 27 .0053 .16 2.9 402 179,455

Parenteral AWP 1.5 18 51 .0049 .28 9.4 487 459,743
WAC 1.1 13 39 .0041 .2 7.5 415 248,247

Outside of shortage AWP 1.3 13 44 .0049 .37 5.4 487 749,564
WAC .87 11 35 .0041 .18 5.2 415 380,743

During shortage AWP 1.3 12 40 .0049 .38 5.5 482 106,122
WAC .73 8.1 26 .0041 .18 3.8 402 47,220

Before/After shortage notified AWP 1.3 13 43 .0049 .37 5.4 487 843,459
WAC .86 11 34 .0041 .18 5.1 415 422,002

Month of notified shortage AWP 1.3 13 41 .0049 .39 5.3 482 12,227
WAC .77 10 32 .0041 .17 3.9 402 5,961

Notes: Balanced panel of NDC (5-4-2 format) at the year-month level, from 2002 to 2019. Prices (Average Wholesale Prices, AWP and
Wholesale Acquisition Costs, WAC) are from the Red Book (IBM Micromedex). Information about drug shortages are from the UUDIS.
Interestingly, unit prices are slightly lower during shortages. It may either suggest that only the lowest-price manufacturers survived by the
time the shortage starts, so that the ones going short are the one offering higher prices (and thus possibly having higher production costs).
The defaulting manufacturers may not be able to ramp up production quickly because their high production costs make it more profitable
for them to stay out. Alternatively, that shortages are coinciding with periods during which prices have been driving down (and could be the
result of a ”race-to-the-bottom” in prices).
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(a) Generic versus Brand (all drug forms)
Average Wholesale Price, AWP (Hospitals to GPO) Wholesale Acquisition Cost, WAC (GPO to Labelers)

(b) Sterile Injectables (Parenteral Drugs) versus Other Drugs
Average Wholesale Price, AWP (Hospitals to GPO) Wholesale Acquisition Cost, WAC (GPO to Labelers)

Figure B4: Unit Price Variations (in Logs) Around New Notified Shortages

Notes: Balanced panel of generic injectable drugs in shortage from 2002 to 2019 from the UUDIS. Prices are from IBM Micromedex (”Red Book”). All prices are adjusted for inflation using CPI (base year:
2010) The left panels represent Average Wholesale Price (AWP), which is the price paid by provider hospitals to Group Purchasing Organizations (GPO). The right panels represent Wholesale Acquisition
Cost (WAC), which is the price paid by Group Purchasing Organizations (GPO) to Drug Labelers). The top panels compare branded drug products to generic drug products (across all drug forms, not only
injectables). The bottom panel compares sterile injectable drugs (also called ”parenteral” drugs) to other non-parenteral drugs.



B.3. Correlations between Offshoring and Shortages

B.3.1. Sterile injectable drugs that went short over the last 15 years are the most heavily exported

by Indian firms

In Figure B5, I use detailed descriptions of shipments from digitized Indian Customs Data to plot

the evolution of Indian exports of sterile injectable drugs over years 2008-2019. I exploit similar text

mining techniques already used to identify drugs in the U.S. custom manifests to look for text strings

that match the list of sterile injectable drugs sold in the U.S. inside Indian imports and exports of

pharmaceutical products.104 Figure B5 plots the evolution of imported quantities and imported drug

values over time. I then further split the sterile injectable drugs I capture in the Indian Customs Data

by their shortage status in Figure B5 (a drug is labeled as ”shortage” if it appears on the U.S. shortage

list at some point).

(a) Exports of Sterile Injectable Drugs
(b) By U.S. shortage status

Figure B5: Global Exports of Sterile Injectable Drugs, India

Notes: This figure exploits detailed descriptions of shipments from digitized Indian Customs to plot the evolution of Indian exports of sterile
injectable drugs over years 2008-2019. Panel (b) split the sterile injectable drugs I capture in the Indian Customs Data by their shortage status.
A drug is labeled as in ”shortage” if it appears on the U.S. shortage list at some point. I have approximately the same number of drugs
in both groups (250 drugs categorized as “shortage” drugs and 260 drugs without U.S. shortages). Sterile injectable drugs that went into
shortage at some point over the last 15 years are those that are the most heavily exported by Indian firms.

B.3.2. An offshoring increase is correlated with a higher probability of shortage ex-post

. Figure B6 then reports the coefficients of a fixed-effects panel regression of shortage on offshoring,

with the purpose of assessing one question: is a marginal increase in the share of foreign-based man-

ufacturers for a drug correlated with a higher probability of this drug going short in the subsequent
period?

To answer, I calculate annual variations in each drug’s foreign manufacturer share and categorize

it using a dummy variable: 1 signifies an at least 10% increase; 0 signifies a decrease or no change. I

104I match 65% of sterile injectable drugs present in my data for the U.S. based on a matching of exact drug names. I did
not use here such a comprehensive pre-cleaning of shipment descriptions and fuzzy-matching techniques as performed for
the main U.S. customs data
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then evaluate changes between t − (n + 1) and t − n for n ∈ 1, 3, just prior to a shortage. Looking at the

probability a drug goes into shortage at time t conditional on changes in offshoring rates in years just

prior to the shortage allows testing whether variations are influenced by the 2011 peak of offshoring.

Because the timing and length of offshoring events vary across drugs, regression coefficients in panel

data models can indeed be contaminated by effects from other periods, and correlations can arise

solely from heterogeneity in the timing of offshoring (see Section B.6 for a further resolution of these

issues). In each case, I regress a shortage dummy on an offshoring dummy, covariates, drug, and time

fixed-effects, first using data from 2004 to 2019, then only from 2013 to 2019. The fixed-effects panel

regression equivalent is given by the equation:

Shortagejt = β Offshoredjt + αj + ξt + x′jtγ + ωit (16)

where the dependent variable is an indicator variable equal to 1 if a given drug j is in shortage at time

t, Offshoredjt is an indicator variable equal to 1 if the drug offshoring rate increases between time

t − n and t. xjt are time-varying drug-level covariates (log mean unit price for a drug as measured

by average wholesale price, age of the drug, average number of manufacturers), ξt are time fixed-

effects, αj are drug fixed-effect. Drug products are defined at the molecule-form level here (not at the

manufacturer level).

Figures B6 plot the β coefficients from regression 18. Taking all foreign-based facilities, an increase

in the share of foreign manufacturers in the last 1 to 3 years is strongly correlated with a higher

probability of the drug being in shortage at time t. The share of facilities located in Asia is overall higher

than when taking all foreign facilities together, suggesting a higher correlation when manufacturers

choose locations with lower marginal costs of production. Regression coefficients are reported in the

appendix Tables B6 and B5.
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Figure B6: Shortage events are correlated with offshoring increase

Notes: This figure plots the β coefficients from regression 18. Taking all foreign-based facilities, an increase in the share of
foreign manufacturers in the last 1 to 3 years is strongly correlated with a higher probability of the drug being in shortage
at time t. The share of facilities located in Asia is overall higher than when taking all foreign facilities together, suggesting a
higher correlation when manufacturers choose locations with lower marginal costs of production. Regression coefficients are
reported in the appendix Tables B6 and B5
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Table B4: Probability of shortage on Medicare Demand

Dependent Variable: P(Shortage=1) P(New Shortage=1) Length Shortage (Days)

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Log Annual Allowed Charges -.04277∗∗∗ -.04896∗∗∗ -.06564∗∗∗ -.00343 -.00524 -.00726 -81.84∗∗∗ -65.06∗∗∗ -58.81∗∗∗

[.00606] [.00876] [.01127] [.00261] [.00379] [.00534] [15.9] [22.71] [21.88]

Share Foreign Facilities .1977∗∗ -.00506 .02696 .03328 323.2 -488
[.07643] [.1349] [.03579] [.06414] [214.2] [543.4]

Share Asian Facilities .3743∗∗∗ -.00751 1013∗

[.1405] [.07777] [577.1]

St. Dev. .3598 .3817 .4396 .1552 .1652 .2081 574.6 629.7 606.7
Year & Drug Fixed Effects ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Beta Coefficient -.3627∗∗∗ -.4152∗∗∗ -.5565∗∗∗ -.04204 -.06414 -.08881 -.3161∗∗∗ -.2513∗∗∗ -.2271∗∗∗

[.05135] [.07427] [.09558] [.03198] [.04641] [.06533] [.0614] [.0877] [.08448]

OLS Coefficient -.0011 -.00032 -.00819∗∗ .0005 -.00028 -.00309 20.89∗∗ 53.21∗∗∗ 54.43∗∗∗

[.00187] [.00267] [.00357] [.00119] [.00158] [.00244] [8.216] [11.93] [11.81]

Notes:∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Robust standard errors in parenthesis.
Balanced Panel of Generic Sterile Injectable Drugs, 2004 to 2019. All regressions include drug and year fixed effect.
†Annual Allowed Charges, Drug Total (in log). Data from CMS, Medicare Part B National Summary Data File, in 2010 dollars
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Table B5: Probability of shortage as a function of whether the share of foreign manufacturers increases- 2004 to 2019

P(Shortage=1) P(New Shortage=1)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Share Foreign Up at t-1 (t-1 - t-2) .1817∗∗∗ .1946∗∗∗ .1945∗∗∗ .04698∗∗∗ .04584∗∗∗ .03631∗∗∗

[.01354] [.01583] [.01876] [.00848] [.01005] [.01198]

Share Foreign Up at t-2 (t-2 - t-3) .166∗∗∗ .153∗∗∗ .165∗∗∗ .05554∗∗∗ .04974∗∗∗ .04921∗∗∗

[.01444] [.01546] [.01856] [.00918] [.00982] [.01185]

Share Foreign Up at t-3 (t-3 - t-4) .1802∗∗∗ .1538∗∗∗ .05141∗∗∗ .04384∗∗∗

[.01515] [.01768] [.00967] [.01129]

Constant .1605∗∗∗ .1734∗∗∗ .1767∗∗∗ .1457∗∗∗ .1298∗∗∗ .0552∗∗∗ .05903∗∗∗ .06148∗∗∗ .0505∗∗∗ .04627∗∗∗

[.00577] [.00623] [.0067] [.00722] [.00927] [.00361] [.00396] [.00428] [.00459] [.00592]

Year & Drug Fixed Effects ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

R2 0.031 0.026 0.031 0.060 0.093 0.005 0.007 0.006 0.012 0.016
Observations 5555 5017 4488 4245 3077 5555 5017 4488 4245 3077
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Robust standard errors in parenthesis are clustered at the drug level.

Balanced Panel of Generic Sterile Injectable Drugs, 2004 to 2019. All regressions include drug and year fixed effects.

The dependent variables are dummies equal to 1 if a (new) shortage is notified at t; average values over thus gives the probability of a (new) shortage

Our independent variables are dummies equal to 1 if the share foreign increases between two defined period
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Table B6: Probability of shortage as a function of whether the share of foreign manufacturers increases - 2004 to 2019

P(Shortage=1) P(New Shortage=1)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Share Foreign Up (t - t-1) .17∗∗∗ .1373∗∗∗ .1453∗∗∗ .04651∗∗∗ .03926∗∗∗ .05064∗∗∗

[.01284] [.01835] [.02172] [.00796] [.01126] [.01345]

Share Foreign Up (t - t-2) .1744∗∗∗ .09552∗∗∗ .09518∗∗∗ .05276∗∗∗ .02154∗∗ -.00379
[.01328] [.01682] [.02294] [.00832] [.01032] [.01421]

Share Foreign Up (t - t-3) .1799∗∗∗ .04401∗∗ .0637∗∗∗ .03387∗∗∗

[.01467] [.02044] [.00923] [.01266]

Constant .1553∗∗∗ .1645∗∗∗ .1816∗∗∗ .1552∗∗∗ .1629∗∗∗ .0521∗∗∗ .05466∗∗∗ .05713∗∗∗ .05048∗∗∗ .05113∗∗∗

[.00543] [.00627] [.00735] [.00654] [.00798] [.00336] [.00393] [.00463] [.00401] [.00495]

Year & Drug Fixed Effects ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

R2 0.028 0.033 0.035 0.042 0.055 0.006 0.008 0.011 0.008 0.013
Observations 6075 5133 4184 4757 3570 6075 5133 4184 4757 3570
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Robust standard errors in parenthesis are clustered at the drug level.

Balanced Panel of Generic Sterile Injectable Drugs, 2004 to 2019. All regressions include drug and year fixed effects.

The dependent variables are dummies equal to 1 if a (new) shortage is notified at t; average values over thus gives the probability of a (new) shortage

Our independent variables are dummies equal to 1 if the share foreign increases between two defined period
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Figure B7: Foreign imports drop during shortages

Notes: This figure plots the average number of manufacturers captured in the U.S. Customs Data (Imports) for sterile injectable
drugs that went into shortage (in purple). The peak of U.S. shortages going from 2009 to 2012 corresponds to a sharp drop in
the number of foreign manufacturers found in the customs.

Figure B8: Imported Drugs Face Longer and More Frequent Shortages

Notes: Among all drugs that went into shortage over the 2004-2019 period, imported drugs (as defined by their presence
in U.S. imports customs) face longer shortages as measure by the time between the first notification of a shortage and its
resolution; 618 days on average (379 median) versus 423 days for non-imported drugs (232 median) on the left panel. On the
right panel, imported drugs also face more frequent shortage spells compared to non-imported drugs: 3.8 shortages on average
(sd 1.7) against 2.1 shortage events (sd 1.4) for non-imported drugs)
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B.4. European Shortages

(a) European Shortages: US vs Europe, 2016-2020

(b) European Shortages: European countries vs US, 2016-2020

Figure B9: European shortages

Notes: These plots compare drug shortages in the U.S. and in Europe over the period 2016-2020, as recorded by national
health agencies. Most European countries do not have consistent historical records of shortages before 2014-2015. The exact
stringency of the drug shortages definition may also vary across countries (some record drugs in their shortage list as soon as
the drug’s supply is under “tension”; other only records shortages of critical medical products and do not report stock-out of
routine, non-medically essential medications. Comparison of shortages across countries re thus to be interpreted with caution.
The bottom panel compares the U.S. (in light green) with 5 European countries: France, Belgium, Germany, Sweden and
Italy.The top panel aggregates all these European countries and compare them to the U.S. The trend of shortages in Belgium
is the most closely similar to the U.S. Many spikes of shortages are correlated over time across countries. Aggregating all
European countries, the amplitude of medication shortages is larger than in the U.S., especially since 2018.

B.5. Additional Tables: Instrumental Variable Analysis

Predicted Disease Burden Measures: Data To build this predicted disease burden measure, I use the

World Health Organization (WHO)’s Global Burden of Disease (GBD). The data provide the country-

year-disease measures of burden, broken down into six different demographic groups: three age groups
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(0–14, 15–59, and 60+) for each gender.105 I use as a primary measure of disease burden the number of

lost disability-adjusted life years (DALYs), which combines data on the mortality and morbidity caused

by each disease. I eventually use population data for each country in each of the six demographic

groups for each year (2004-2019) from the WHO as well. To link drugs to diseases, I first create cross-

walks that allows linking each therapeutic category in my dataset, based on the Ephmra classification,

to the WHO’s list of therapeutic categories (ATC). I then use the hand-coded mapping made by Costinot

et al. (2019) between therapeutic categories and the (WHO)’s Global Burden of Disease dataset to map

my drug products to disease burden.

Table B7: Probability of shortage on share foreign - Instrument: log(PDB)

Dependent Variable: P(New Shortage=1) Shortage Days

Second Stage†

Facilities, Share Foreign .2088∗∗ .2562∗∗∗

[.09991] [.06975]

Facilities, Share Asia .3828∗∗∗ .4245∗∗∗

[.122] [.08417]

First Stage
log(PDB) India/China .32∗∗∗ [.08532] .2849∗∗∗ .32∗∗∗ .2849∗∗∗

[.08532] [.06197] [.08532] [.06197]

Year Fixed Effects ✓ ✓ ✓ ✓

Drug Fixed Effects ✓ ✓ ✓ ✓

Std. Dev. 8.286 10.48 5.784 7.227
F-stat First-Stage ‡ 34.07 41.13 34.07 41.13
Beta Coefficient .3253∗∗ [.1556] .4984∗∗∗ [.1589] .6562∗∗∗ [.1786] .9088∗∗∗ [.1802]
OLS Coefficient .01973∗∗ [.00966] .07312∗∗∗ [.0129] .01324∗∗ [.00645] .04995∗∗∗ [.00935]
Observations 16576 16576 16576 16576

Notes: ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Bootstrap SE in parenthesis. †Instrument: Predicted Disease Burden (log). F
statistics is statistical significant following the ”tF” test procedure given by Lee et al.(2020) for weak IVs

B.6. A Matched Dynamic Differences-in-Differences Framework

The constellation of evidence presented in Sections 2 to 3 suggests that offshoring of a generic drug

manufacturing process is linked to an increase in the drug’s shortage probability. These correlations,

however, are based on fixed effect panel regressions that may be subject to endogeneity and selection

issues and do not establish causal relationships.

In this section, I refine this analysis, using a matched dynamic difference-in-differences (DID) de-

105Although there may be local variation in the collection of vital statistics that underpin these measures, the WHO ensures
that these data are valid for cross-country and cross-disease comparisons.
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Figure B10: Variations in Predicted Disease Burden Measures

Notes: Variations in the Preficted Disease Burden Measures over time and across countries. The predicted disease burden
measure, detailed in equation (1), captures the average country-level disease burden that would be expected given a coun-
try’s demographic structure. This ratio varies at the country-disease-year level and leverages cross-country and cross-time
variations in demographic structures and healthcare access.

sign on a subset of data to estimate the partial equilibrium impact of shifting from domestic to offshored

production on drug shortages. In order to address selection of drug products and manufacturing firms

into offshoring and the endogeneity of the offshoring decisions, I match sterile injectable drugs whose

manufacturing process was offshored with similar drugs that were never produced abroad. This match-

ing, using a Coarsened Exact Matching (CEM) algorithm, controls for selection on observables, while

the DID design address potential concerns about selection on unobservables.

The goal of this exercise is to compare closely similar drug products. Previous sections compared

drugs with similar administration routes, but these may still vary widely in therapeutic classes, ages,

prices, or market concentration. Here, I employ additional observable drug characteristics to create

comparable product pairs before offshoring, investigating the pattern of shortages after one drug is

offshored and the other is not.106 The implicit identifying assumption is that, absent the offshoring,

each pair of matched drug should have shown similar shortage patterns in the post-period. The DID

event study then scrutinizes the evolution of shortages around the offshoring year, and the parallel

evolution of treated and control units preceding the increase in foreign production, enabling control for

time-invariant heterogeneity across drug products and manufacturers.

B.6.1. Treatment

Data Sample. While my full dataset consists of a balanced panel of 16 years (January 2004 to December

2019) and 1220 generic sterile injectable drugs (543 of which witnessed at least one shortage event

over the period and 677 of which never went short), this difference-in-difference framework relies on a

subset of this panel for which I have extended information on observable drug characteristics.107 This

subset is constituted of 712 sterile injectable drugs, 543 of which went into shortage over the period. For

106For the 543 sterile injectables drugs in shortage in my original dataset, I added 677 sterile injectable drugs that never
went short, in order to analyze differences in pricing, concentration and share of foreign manufacturers for drugs with similar
characteristics.

107This analysis will soon be extended to latest version of my dataset, which includes extended information on drug
characteristics for all drug products
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these 543, I have information on AHFS pharmacologic-therapeutic categories through the UUDIS’ drug

shortage dataset.108 The remaining 169 drugs are sterile injectable drugs that never went short and that

I identified as sterile injectables using the Orange Book data. For this subset of 169 drugs (over 677),

I was able to extract therapeutic categories from annual AHFS manuals of therapeutic classifications

that reports classes for 1761 drugs,109 then matching therapeutic categories back to my dataset based

on drug names, active ingredients and route of administration.

Defining Treatment and Control Groups. In order to estimate the causal impact of an increase in

offshoring of drug manufacturing facilities on the probability of the drug going into shortage, I define

treatment and control groups based on yearly changes in their share of foreign manufacturers.110 Here,

the data structure is characterized by a balanced panel of information on treated and non-treated

observations, in which treatments have varying start dates and duration.

I considered different definition of treatment, at the drug level, for robustness. The two options I

consider are to either i) identify drugs that were never offshored or ii) identify drugs that were always

mostly produced in U.S.-based facilities. In particular, my base specification identifies control drug

units as product that were never produced abroad (“never offshored”) and define treated units as any

drug product that was “offshored” over the period. This results in 477 control drugs and 743 treated

drugs. For robustness, I also specify alternative groups based on the maximal offshoring share for each

drug (defined as a drug’s maximal share of foreign-based manufacturers as observed in the data). I

use two different specifications based on different offshoring thresholds for the control group: (i) drugs

that never had more than 10% of offshored manufacturers over the period 2004-2019 (489 control drugs

versus 731 treated) and (ii) Drugs that never had more than 20% of offshored manufacturers over the

period 2004-2019 (506 control drugs versus 714 treated).

Defining an Offshoring Event. Offshoring events correspond to situations during which a given

drug product, initially manufactured in the U.S. (at “Home”), then starts to be manufactured in a

foreign-based locations (”Abroad”). I define a time dummy for the start of the offshoring event (the

“treatment”) and test several specifications in order to identify the ”main” offshoring year for a drug.

In the base specification, I compute for each drug the annual growth rate in offshoring shares and select

the year displaying the highest growth rate as the main offshoring event. This is the time at which the

treatment “starts”. In a second specification, I select the second year with the highest offshoring growth

rate as the start of the treatment. Eventually, I consider scenarios defining the start of the treatment

based on a offshoring threshold: treatment “starts” the year offshored production reaches either 30, 40,

50 or 60% of total production.

Based on these different thresholds, I generate a time dummy equals to one for the treated group in

the post-treatment period. This dummy always take a value of zero for controls, and for treated units

in the pre-treatment period.

108The UUDIS monitors drug shortages reported to the American Society of Health-System Pharmacists
109The full restricted AHFS classification covers almost all marketed drugs in the U.S. and includes more than 200,000

National Drug Codes (NDCs).
110Note that a future version of this work will weight these shares by volumes of production, using imported volumes from

the U.S. Customs Data and inferring volumes produced by U.S.-based facilities using demand and manufacturers’ market
shares from Medicare Part B data
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B.6.2. Matching Procedure

In order to generate an appropriate control group for offshored (i.e. treated) drug that holds the parallel

trends assumption, I apply a Coarsened Exact Matching (CEM) on the pre-treatment period.

The principle of CEM is to temporarily coarsen each variable used for the match into substantively

meaningful groups, exact match on these coarsened data and then only retain the original (uncoars-

ened) values of the matched data for the regression analysis. CEM places observations into strata that

are the foundations for calculating the treatment effect. CEM allows of choosing the coarsening ex ante

and thus to better control the amount of imbalance in the matching solution. Matching inescapably

comes with trade-offs: larger bins (more coarsening) will result in fewer strata. Fewer strata will

result in more diverse observations within each strata and, thus, higher imbalance. Matching involves

trimming observations that have no close matches on pre-treatment covariates in both the treated and

control groups. Among advantages of CEM is typically less model-dependence, lower bias, and (by

removing heterogeneity) increased efficiency (Iacus, King, and Porro, 2008; Ho et al., 2007).

I start with a balanced panel of 19,520 drugs × year events and identify drugs which were never

produced abroad over the study period as my main control group specification. I match drugs on

a number of variables. Firstly, I exact match each offshored drug to a “counterfactual” set of drugs

in i) the same route of administration (sterile injectables) and ii) the same 2-digits AHFS therapeutic

category(e.g.: cardiovascular drugs, antiprotozoals, blood derivatives, hormones...).111 In levels, I then

impose treated and control drugs to belong to: (i) the same quartile of annual number of manufacturers

in the three years before the event, (ii) the same decile of age, as measured by the first year of a drug’s

approval in the Orange Book and (iii) the same decile of log mean unit price in each of the three years

before the event (using Average Wholesale Prices from the Red Book, after adjusting prices based on

the 2010 CPI). I find for each treated drug at least one control drug in one of the associated control

categories.

Across my different specifications for treatment groups and time of treatment dummies, I obtain an

average total of 79 treated drugs and 104 controls, each treated drug having on average 1.3 associated

control drugs. I do not restrict my drug-level matching to be one-to-one and keep all control plants

drugs that meet the matching criteria to a treatment.112 To make sure I only compare drugs that are

comparable, I drop treated drugs that do not have common support in the control groups for some

observed characteristics. Table B9 compares moments of treated drugs and their matched controls

before and after coarsened matching and confirms non-parametrically that treated and control units

share similar characteristics.

111There are 31 two-digits therapeutic categories in total.
112A unique counterfactual drug for each treatment could have been selected based on either a propensity score or a one-

to-one Coarsened Exact Matching (CEM), thereby eliminating the necessity of data weighting for balanced samples. However,
due to sample size constraints, all potential controls were retained.
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B.6.3. Empirical Framework

It is not obvious that drugs whose manufacturing processes have been offshored to foreign-based

facilities would have higher probability of shortages compared to U.S.-based manufactured drugs.

Consider the following basic shortage equation:

Shortageijt = β Offshoredjt + z′jtγ + x′jtδ + ϵjt (17)

where Shortagejt is the shortage status of drug i at time t. Offshoredjt is an indicator variable taking

a value of 1 if the drug is offshored and 0 if not. zjt are drug manufacturer characteristics , xjt are

drug characteristics and ε jt is an error term. Drug characteristics that may affect shortage probability

includes drug quality (”purity” of the product, absence of contamination...), manufacturing facilities

locations (e.g. in places more prone to natural disasters), concentration of the manufacturing process

(in terms of number of manufacturers or production lines)...Pharmaceutical firm characteristics that

may affect disruptions include portfolio of (competing or new) products, financial stability or size.

Whether a drug is offshored or produced in domestic-based facilities may affect the probability of

supply shortages for various reasons. If markets are not perfectly competitive and generic drug quality

is difficultly observable, then offshoring may allow for lower-standard manufacturing practices. For

example, offshoring could lead to more frequent disruptions due to costs cutting on production lines

and lack of facility updates, which could be allowed by less stringent enforcement of regulations and

controls by regulatory agencies outside of the national territory.

This equation could be estimated using OLS, but offshoring status is likely correlated with firm

and drug characteristics. Although panel data regressions may help control for drug characteristics via

drug fixed effects, I miss information on firms characteristics (as for instance product portfolios). In

section ??, I relied on drug fixed effects regressions with panel data to estimate differences in shortage

probabilities when the share of foreign-based manufacturers of a drug increase, following the below

specification:

Shortagejt = β Offshoredjt + αi + γt + x′itδ + ε it (18)

where Offshoredjt is an indicator variable taking a value of 1 if the drug offshoring rate increases be-

tween time t − 1 and t (or t − 2 and t or t − 3 and t according to specifications) and 0 if not. Using this

method, we identify the impact of offshoring on shortages using the movement of drugs between do-

mestic and foreign status, rather than through the timing of offshoring. The downside of this approach

is that there is more potential for selection into which drug becomes offshored.

To solve these pitfalls, I provide alternative estimates of the effect of offshoring using a dynamic

event-study design around offshoring events. My dynamic event-study framework exploits my full

history of data for the treatment and control groups by estimating regression models of the form:

Shortagejt =
10

∑
k=−4,k ̸=−1

βk1 (t = t∗ + k)× Offshored j + γt + Offshored j + αmatch + x′itδ + ε it (19)

where Shortagejt is an indicator variable for shortage status for drug i in year t and Offshored j is an

indicator for whether the drug was offshored in year t∗. ξt are year fixed-effects to control for year-level
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shocks that could affect all drugs and firms, xjt are drug-level time varying control and ε jt is an error

term. αmatch is a strata fixed-effect (or ”matched group” fixed effect), which ensures that I am estimating

the effect of offshoring only within a group of matched treated and control drugs. The indicator for

time, D := 1{t = t∗ + k} for unit i being k periods away from treatment time t∗ at calendar time t. In

this specification, for never-treated units, the indicator is set to 0 for all k and all t. Standard errors are

clustered at the matched strata level.113 In this specification, identification comes solely from differences

between control and treated units within a narrow matching group, and not from units coming in and

out of treatment.

Matching on route of administration, therapeutic class, age, price and number of manufacturers

allows to find drugs that would plausibly exhibit common trends in the absence of offshoring activity.

This matching strategy is similar to a number of recent papers implementing a dynamic difference-in-

differences research design (Jager, 2016; Goldschmidt and Schmieder, 2007; Borusyak and Jaravel, 2017;

Le Moigne, 2020). Using a matched control group that is never treated prevents the analysis to suffer

from the identification issues that arise in traditional event-study designs with never-treated units

Borusyak and Jaravel (2017) or difference-in-differences designs with staggered timing Goodman-

Bacon (2018); Sun and Abraham (2020). In particular, researchers often use two-way fixed effects

regressions that include leads and lags of the treatment to estimate the dynamic effects of treatment. In

settings with variation in treatment timing across units, lead and lag coefficient can be contaminated by

effects from other periods, and apparent pre-trends can arise solely from treatment effects heterogeneity.

In the matched specification, identification comes solely from differences in treated and never-

treated units over time. In order to avoid multicollinearity (either among the relative period time

indicators or with the fixed effects), I exclude some relative periods from the dynamic specification.

Excluding relative periods close to the initial treatment is common in practice, so that I normalize

relative to the period prior to treatment (exclude t − 1).

B.6.4. Results

The raw means are informative in the matched sample, but there is still possibly selection and time-

varying variables at the drug level that affect the changes over time. The matched event study design

allows to control for this type of selection by estimating equation (4) controlling for matched drugs

fixed effects as well as year-level shocks.

Table B8 reports DID coefficients from equation (4), using as definition of a control group all drugs

that were never offshored during the period 2004-2019.114 Appendix tables ?? and ?? reports robustness

checks using different definition of control groups (controls are respectively defined as drugs that never

had more than 20% or 30% of offshored manufacturers over the period 2004-2019). The coefficient of

interest β can be interpreted as the causal effect of offshoring on the probability of drug shortage in

response to a marginal increase in a drug’s share of foreign-based manufacturing plants, under the

assumption that drug outcomes in the treatment (“offshored”) and control group (“not offshored”)

would have evolved similarly in the absence of offshoring. Figure 5 displays the dynamic event study.

113Clustering at the drug level yields similar standard errors
114Meaning their share of foreign-based manufacturing facilities is zero percent over the period
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Comparing coefficients from the different columns of Table B8, my differences-in-differences coeffi-

cient seems robust to different specifications for the time of treatment dummy. All post-treatment coef-

ficients are positive and strongly correlated with shortages. Offshored drugs are on average 12% more

likely to experience shortages following the change in manufacturing locations compared to similar

drugs whose production remained U.S.-based. There is also a 6% higher probability of a new shortage

being notified just after offshoring for these drugs compared to their counterparts. Moreover, drugs

experiencing an offshoring event are 39% more likely than control drugs to be in the panel of drugs

that went at least once into shortage over the whole period 2004-2019. Eventually, offshored drugs are

strongly correlated with longer shortage events compared to non-offshored drugs - on average 125 days

longer across specifications. There results are robusts to alternative definitions of treatment groups.

Figure 5 plots the βk coefficients of specification (4). It shows the difference in shortage outcomes

between drugs that were never offshored and drugs that were offshored with a matched-group,

pre and post the offshoring event and normalizing to zero at time t − 1. The top-left panel regress

shortage on offshoring, for each matched group of drugs, and plots the average differential shortage

outcome. of treated units. The top-right panel does the same for shortage length (measured in days

as the difference between the first reported date of a shortage and the date at which it was officially

resolved). In both cases, we see some long-lasting positive effect of offshoring on the probability a drug

goes into shortage. This is robust to the specification of the control group: the bottom left and right

panels reproduce these plots for alternative definition of a control group (either drugs that were never

offshored, or drugs with less than 10 or 20% of offshored production). Independently of the definition

of a control group, the probability of a shortage pre and post an offshoring event evolves in similar

fashion. In all cases, we see a clear increase in the marginal number of days of additional shortages for

treated drugs post offshoring.
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Table B8: Average effect of offshoring events on drugs’ shortage outcomes

Control group: Drugs that were never offshored

Treatment Time Specification Highest Offshoring 2d Highest Offshoring 30% Offshoring 40% Offshoring 50% Offshoring 60% Offshoring

Dependent Variable: Dummy for Shortage
Post x Treatment .134∗∗∗ .121∗∗∗ .1169∗∗∗ .114∗∗∗ .114∗∗∗ .118∗∗∗

[.0464] [.0361] [.0335] [.0319] [.03189] [.0323]
Adjusted R2 0.0671 0.0499 0.0722 0.0682 0.0682 0.0714
Mean (treatment) .115∗∗∗ [.0082]

Dependent Variable: Dummy for New Notified Shortage
Post x Treatment .057∗∗∗ .056∗∗∗ .062∗∗∗ .058∗∗∗ .0583∗∗∗ .060∗∗∗

[.01786] [.0157] [.0144] [.0129] [.0129] [.0131]
Adjusted R2 0.0262 0.0229 0.0433 0.0382 0.0382 0.0399
Mean (treatment) .0526∗∗∗ [.0058]

Dependent Variable: Dummy for Drug Ever Being in Shortage over 2004-2019
Post x Treatment .389∗∗∗ .382∗∗∗ .433∗∗∗ .423∗∗∗ .423∗∗∗ .435∗∗∗

[.0987] [.1087] [.0889] [ .0873] [ .0873] [ .0874]
Adjusted R2 0.1574 0.1401 0.2793 0.2654 0.2654 0.2759
Mean (treatment) .471∗∗∗ [.0129]

Dependent Variable: Shortage Length in Days
Post x Treatment 154.87∗∗ 129.95∗ 108.77∗∗ 105.77∗∗ 105.77∗∗ 110.87∗∗

[ 71.98] [68.81] [48.89] [47.97] [47.97] [ 42.93]
Adjusted R2 0.1574 0.0496 0.0565 0.0532 0.0532 0.0567
Mean (treatment) 125.59∗∗∗ [9.126]

Observations 1,648 1,648 1,648 1,648 1,648 1,648
Year & Strata Fixed Effects ✓ ✓ ✓ ✓ ✓ ✓

.

Notes: p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Robust standard errors in parenthesis are clustered at the matched strata level. Balanced Panel of Generic Sterile Injectable Drugs, 2004 to 2019.
Treatment is defined as any drug that was “offshored” and control units are defined as drugs that were “never offshored”. Five different specifications are reported for the time dummy
marking the start of the offshoring event. Each column reports a different specification for the time of treatment dummy. In column (1) I compute annual growth in offshoring shares for each
drug and select the year with the highest growth rate as the main offshoring event (i.e. the start of treatment). I repeat this and select the second highest growth year as the start of the treatment
year in column (2). For columns (3) to (6), I define the start of treatment for a drug as the first year at which the offshoring rate reaches either 30, 40, 50 or 60% (offshoring rate is defined as the
share of foreign-based facilities)
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B.6.5. Matching and Treatment and Control Groups

Table B9: Summary Statistics: treated and control drugs pre and post matching

Pre-Matching Post-Matching
Treated Control Treated Control

Mean AWP Unit Price (in log) 2.511 2.894 2.473 2.543
[2.9073] [2.9016] [1.972] [2.036]

Yearly Number of Manufacturers 1.91 5.3873 2.0875 3.04
[6.8580] [3.0357] [3.0133] [ 2.94]

First Year of Approval, Orange Book 1989.353 1990.389 1989.804 1990.103
[11.8573] [10.3248] [10.3452] [10.2386]

Obs. 6,461 1,728 816 832

Notes: Standard deviation in parenthesis. This table compares moments of treated drugs and their matched controls before and after
coarsened matching, in order to confirm nonparametrically that treated and control units share similar characteristics. The data is a balanced
panel of drugs-year from 2004 to 2019. Results on matching (number of individual drugs matched in each group, number of strata matched
and global imbalanced as measure by the L1 statistics can be found in Table B10.
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Table B10: Summary Statistics on Coarsened Exact Matching Results

Offshoring, Treat. Time Spec. Highest 2d Highest 30% 40% 50% 60%

Control: Never Offshored
L1 Imbalance Before Matcha .71137956
L1 Imbalance 3.537e-15 9.836e-16 3.929e-15 2.910e-15 1.963e-15 4.562e-16
Matched Strata 31 31 37 36 35 31
Matched Treatments 49 44 79 69 66 58
Matched Controls 67 55 75 72 72 54

Control: Offshoring Max 10%
L1 Imbalance Before Match .64980728
L1 Imbalance 2.652e-15 3.452e-16 1.076e-15 3.316e-15 1.919e-15 1.815e-15
Matched Strata 31 37 41 40 38 33
Matched Treatments 45 46 79 70 66 54
Matched Controls 76 79 87 86 86 78

Control: Offshoring Max 20%
L1 Imbalance Before Match .59691182
L1 Imbalance 2.585e-15 3.244e-16 8.838e-16 3.813e-15 2.230e-15 3.166e-16
Matched Strata 37 42 45 43 44 40
Matched Treatments 43 40 81 70 69 55
Matched Controls 92 94 104 100 101 89

Notes: This table displays results on matching (number of individual drugs matched in each group, number of strata matched and global
imbalanced as measure by the L1 statistics.b

aIt is based on the L1 difference between the multidimensional histogram of all pre-treatment covariates in the treated
group and that in the control group.

bIt is based on the L1 difference between the multidimensional histogram of all pretreatment covariates in the treated
group and that in the control group.
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Appendix C - Model Details

C.1. Equilibrium Outcomes of the Manufacturer’s Profit Maximization

Problem: Derivations

At a given time t, manufacturer j’s ex-ante profit maximization problem is:

max
qj, pj

Eε l

[
πj(·)

]
=

[
1 − F

(
QD

j (p, X)

qj

)]
︸ ︷︷ ︸

Pr(no excess demand)

pjQD
j (p, X)︸ ︷︷ ︸

E(Revenue—no excess)

+

F

(
QD

j (p, X)

qj

)
︸ ︷︷ ︸
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pjqjE
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j (p, X)
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]
︸ ︷︷ ︸
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−
(
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Total Production Cost

=

[
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(
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)]
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j (p,X)

qj

0
y f (y)dy − cjlqj − Fc

j

where the expected location-specific capacity yield ε jl due to the ex-post exogenous suply shock,

conditional on expectation about positive excess demand is

E

[
ε l(j) | ε l(j) <

QD
j (p, X)

qj

]
=

1

F

(
QD

j (p, X)

qj

) ×
∫ QD

j (p,X)

qj

0
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and the probability that a shortage occurs is defined as the probability that there the re-

alized supply of firm j is below demanded levels (excess demand), which is defined as

Pr(qjε l(j) ≤ QD
j (p, X)) = F

(
QD

j (p, X)

qj

)
with ε l(j) ∼ F(µε l , σ).

The firm’s first-order conditions of the firm’s problem are:

(1)
∂E[πj(.)]

∂qj
= 0 ⇔
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qj

)

+ pj

∫ QD
j (p,X)

qj

0
y f (y)dy − f

(
QD

j (p, X)

qj

)
QD

j (p, X)2

q2
j


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⇔
QD

j (p, X)2

q2
j

f

(
QD

j (p, X)

qj

)
+
∫ QD

j (p,X)

qj

0
y f (y)dy − f

(
QD

j (p, X)

qj

)
QD

j (p, X)2

q2
j

=
cjl

pj

⇔ (FOC 1) p∗j =
cjl∫ QD

j (p,X)

qj
0 y f (y)dy

(2)
∂E[πj(.)]

∂pj
= 0 ⇔

− 1
qj

f

(
QD

j (p, X)

qj

)
∂QD

j (p, X)

∂pj
· pjQD

j (p, X) +

[
1 − F

(
QD

j (p, X)

qj

)] [
QD

j (p, X) + pj
∂QD

j (p, X)

∂pj

]

+qj

∫ QD
j (p,X)

qj

0
y f (y)dy + pjqj f

(
QD

j (p, X)

qj

)
∂QD

j (p, X)

∂pj

QD
j (p, X)

q2
j

= 0

⇐⇒
[

1 − F

(
QD

j (p, X)

qj

)] [
QD

j (p, X) + pj
∂QD

j (p, X)

∂pj

]
+ qj

∫ QD
j (p,X)

qj

0
y f (y)dy = 0

I can re-write the second FOC using the fact that the partial derivative of the logit demanded quantities

with respect to price is
∂QD

j (p, X)

∂pj
= −αQD

j (p, X)
(
1 − sj

)
:

[
1 − F

(
QD

j (p, X)

qj

)] [
QD

j (p, X)− αpjQD
j (p, X)

(
1 − sj

)]
= −qj

∫ QD
j (p,X)

qj

0
y f (y)dy

⇐⇒ (FOC 2)

[
1 − F

(
QD

j (p, X)

qj

)]
QD

j (p, X)

qj

[
1 − αpj

(
1 − sj

)]
= −

∫ QD
j (p,X)

qj

0
y f (y)dy

Combining FOCs (1) and (2):

(1)
∫ QD

j (p,X)

qj

0
y f (y)dy =

cjl

p∗j
or p∗jt =

cjlt∫ QD
j (p,X)

qj
0 y f (y)dy

(2)

[
1 − F

(
QD

j (p, X)

q∗j

)]
QD

j (p, X)

q∗j

[
1 − αp∗j

(
1 − sj

)]
= −

∫ QD
j (p,X)

q∗j

0
y f (y)dy

(1) + (2)

[
1 − F

(
QD

j (p, X)

qj

)]
︸ ︷︷ ︸

Pr(no shortage)=P(qjε l≥ QD
j (.))

QD
j (p, X)

qj︸ ︷︷ ︸
DSR∈ [0, 1]

1− α pj
(
1 − sj

)︸ ︷︷ ︸
≡ηj(price elasticity)

 = − cjl

pj︸ ︷︷ ︸
price-cost ratio
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where the second term is the Demand-to-Supply Ratio (DSR ∈ [0, 1], with qj ≥ QD
j (p, X)). The higher

the DSR, the more demand exceeds supply, so the higher price pj should be by the law of supply and

demand.115 The share of “excess surplus” can be computed as (1-DSR).116

From the FOCs, I can rewrite the equilibrium q∗j as a function of p∗j , sj, QD
j (p, X) and cj:

−
p∗j
cjl

(
1 − αp∗j

(
1 − sj

))
QD

j (p, X)

[
1 − F

(
QD

j (p, X)

q∗j

)]
= q∗j

Equilibrium supply ⇒ −
(
1 + ηj

)︸ ︷︷ ︸
price elasticity

p∗j
cjl︸︷︷︸

price-cost ratio

[
1 − F

(
QD

j (p, X)

q∗j

)]
︸ ︷︷ ︸

Pr(no excess demand)

QD
j (p, X) = q∗j

and using the fact that ∂QD
jmt(p, X)/∂pjmt = −αQD

jmt(p, X)
(
1 − sjmt

)
:

⇒ −
(
1 + ηj

)︸ ︷︷ ︸
price elasticity



Pr(no excess demand)︷ ︸︸ ︷
1 − F

(
QD

j (p, X)

q∗j

)
∫ QD

j (p,X)

q∗j

0
y f (y)dy︸ ︷︷ ︸

expected share of surviving capacity in the event of a shortage


QD

j (p, X) = q∗j

∫ QD
j (p,X)

q∗j
0 y f (y)dy can be interpreted as the expected share of production that survives a supply shock

given that this share is less than QD
j (p, X)/qj (scenario under which the surviving capacity post-supply

shock is insufficient to meet demand). This integral thus represents the expected surviving capacity (as

a proportion of initial capacity) in the event of a supply shock that leads to a shortage.

The ratio
[

1 − F
(

QD
j (p,X)

q∗j

)]
/
∫ QD

j (p,X)

q∗j
0 y f (y)dy in turn represents the comparison of the probability

of there being no shortage (no excess demand) to the expected surviving capacity in the event of

a supply shock that leads to a shortage. The numerator is the probability of there being no excess

demand, which is the likelihood that the surviving capacity after a supply shock is greater than the

ratio of demand to supply. The denominator is effectively a measure of the expected shortage in the

case of a supply shock. Hence, this ratio is comparing the likelihood of there being no shortage to

the expected severity of a shortage, in the event of a supply shock. If this ratio is high, that means

shortages are less likely, or that when shortages occur, they are less severe on average. If the ratio is

low, that could indicate that shortages are more likely, or that when they do occur, they tend to be

115Markets with higher DSR are generally expected to display less surplus and higher growth than low DSR markets

116For instance, if demand QD
j (p, X) = 100 and qj = 110, the DSR=0.9, and surplus

(
1 −

QD
j (p, X)

qj

)
is 10%. If demand

QD
j (p, X) = 100 and qj = 150, the DSR falls to 0.66, and surplus is around 33%.
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more severe.

I can rewrite this FOC to get the classical price equal markup over marginal cost form:

p∗j = −
(

1
1 + η∗

j

)
cjl︸ ︷︷ ︸

markup over mc

 q∗j

QD
j (p, X)

[
1 − F

(
QD

j (p,X)
q∗j

)]


︸ ︷︷ ︸
equilibrium supply adjusted by 1/Pr(no shortage)

(20)

with ηjt = 1 − αp∗jt
(
1 − sj

)
. If I want to express the optimal supply in terms of the Lerner index :

Lj ≡
pj − cj

pj
= 1 − cj

pj

⇒− pj

cj
=

1
Lj − 1

I can then rewrite

q∗j =

[
1 − F

(
QD

j (p, X)

q∗j

)]
1 + η∗

j

Lj − 1

C.2. Derivatives of main functions

(1) In general form, h(x) ≡
∫ x

0 y f (y)dy ⇒ h′(x) = x f (x)

Here, defining h

(
QD

j (p, X)

qj

)
≡
∫ QD

j (p,X)

qj
0 y f (y)dy, I thus have:

(i)
∂h(.)

∂
QD

j (p, X)

qj

=
QD

j (p, X)

qj
f

(
QD

j (p, X)

qj

)

(ii)
∂h(.)
∂qj

= − f

(
QD

j (p, X)

qj

)
×

QD
j (p, X)2

q3
j

By Leibniz’s rule

(iii)
∂h(.)
∂pj

= f

(
QD

j (p, X)

qj

)
×

∂QD
j (p, X)

∂pj
×

QD
j (p, X)

q2
j

By Leibniz’s rule

(2) Differentiating the cumulative distribution function F(.) of the supply shock ε l with respect to

manufacturer j′s choice variables, qj and pj:

(i)

∂F

(
QD

j (p, X)

qj

)
∂qj

= − f

(
QD

j (p, X)

qj

)
×

QD
j (p, X)

q2
j

(ii)

∂F

(
QD

j (p, X)

qj

)
∂pj

= f

(
QD

j (p, X)

qj

)
×

∂QD
j (p, X)

∂pj
× 1

qj
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(3) Derivative of the demand function from the logit model of demand.

I have from the logit model of demand: QD
j (p, X) = Mt.sjt = Mt.

exp
(
Xjtβ − αpjt + ξ jt

)
1 + ∑J

k=1 exp(Xktβ − αpkt + ξkt)

So differentiating the demand function with respect to j’s own-price gives
∂QD

j (p, X)

∂pj
= Mt.

∂sjt

∂pjt
Price-elasticities from the logit model are:

ηjkt ≡
∂δjt

∂pkt
.
pkt

sjt
=

−αpjt(1 − sjt) if j = k(own-price elasticity)

αpktskt ifj ̸= k(cross-price elasticity)

Thus derivatives of market shares with respect to prices give:

(1)
∂sjt

∂pjt
= −αsj(1 − sj)

(2)
∂sjt

∂pkt
= αsjsk

Hence

∂QD
j (p, X)

∂pj
= −Mtαsjt(1 − sjt)

= −αQD
j (p, X)(1 − sjt)

C.3. Proof: no minimum is required for the shortage probability to be well-

defined

This section provides a proof that I can get rid of the minimum in F

(
min

{
QD

j (p,X)

qj
, 1

})
by using a

simple proof by contradiction that the manufacturer never chooses qj < QD(.). I demonstrate here that,

when the equilibrium supply choice q∗j is to produce below demanded quantity QD
j (p∗j , p∗−j, Xj, X−j),

there exists another pair of price and quantity that brings a higher expected profit than the current

equilibrium, such that the manufacturer has incentives to deviate for sure and q∗j < QD
j (p∗j , p∗−j, X)

never optimal

Recall my original formula for the expected profit of manufacturer j:

Eε l

[
π
(

pj, qj; QD
j (p, X), cjl , ε l

)]
=

(
1 − F

(
min

{
QD

j (p, X)

qj
, 1

}))
pjQD

j (p, X)

+ F

(
min

{
QD

j (p, X)

qj
, 1

})
pjqjE

[
ε l | ε l < min

{
QD

j (p, X)

qj
, 1

}]
− cjlqj − Fc

j

with ε l ∈ [0, 1] with ε l ∼ F(µε l , σ).
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Claim: For any price vector p−j, observable vector X, any costcjl , any fixed cost Fc
j , and any distribu-

tion function F with support on [0, 1], manufacturer j choosing
(

pj, qj
)

such that qj < QD
j
((

p−j, pj
)

, X
)

is a dominated strategy.

Proof: Fix
(

p−j, X, cjl , Fc
j , F
)

. Choose an arbitrary
(

pj, qj
)

such that qj < QD
j
((

p−j, pj
)

, X
)
. Since,

qj < QD
j
((

p−j, pj
)

, there will always be a shortage, i.e. F
(

min
{

QD
j ((p−j,pj),x)

qj
, 1
})

= 1. Thus, the I

can write the expected profit function as

Eϵl

π
(

pj, qj; QD
j
((

p−j, pj, X
)

, cjl , ϵl
)]

= pjqjµϵl − (cjlqj + Fc
j )︸ ︷︷ ︸

Total cost

where µϵl = Eϵl [ϵl ] Now consider an alternative choice of p′j > pj such that QD
j

((
p−j, p′j

)
, X
)
= qj <

QD
j
((

p−j, pj
)

, X
)
. For such a choice of p′j to exist, it is sufficient to show both that QD

j is monotonically

decreasing in p′j, for all p−j and all X, and that limp→∞ QD
j
((

p−j, p
)

, X
)
= 0, for all p−j and all X. Both

of these conditions should hold as long as QD
j is a well-defined demand function.

Note that it is still the case that F
(

min
{

QD
j ((p−j,pj),X)

qj
, 1
})

= 1, and thus the expected profit

function is the same as above, i.e. there will also always be a shortage with this new choice of p′j.
Now compare the expected profit from choosing

(
pj, qj

)
to the expected profit from choosing(

p′j, qj

)
:

Eϵl

[
π
(

p′j, qj; QD
j

((
p−j, p′j

)
, cjl , ϵl

)]
− Eϵl

[
π
(

pj, qj; QD
j
((

p−j, pj
)

, cjl , ϵl
)]

=
[

p′jqjµϵl − cjlqj − Fc
j

]
−
[

pjqjµϵl − cjlqj − Fc
j

]
=
(

p′j − pj

)
qjµϵl .

Since qj > 0, µϵl > 0, and p′j > pj

Eϵl

[
π
(

p′j, qj; QD
j

((
p−j, p′j

)
, cjl , ϵl

)]
− Eϵl

[
π
(

pj, qj; QD
j
((

p−j, pj
)

, cjl , ϵl
)]

> 0

Therefore, I can always find an alternative
(

p′j, qj

)
that dominates

(
pj, qj

)
when qj < QD

j
((

p−j, pj
)

, X
)
,

which is what I were aiming to prove. As a result of the preceding result, it must always be the case that

if firms are optimizing, F
(

min
{

QD
j (p

∗,X)

qj
, 1
})

= F
(

QD
j (p

∗,X)

qj

)
, and the min function can be ignored.

C.4. Discussion about buyer’s internalizing shortages risk: thinking about

reliability in the logit model.

Xj captures a static buyer’s reputation, or quality score. In reduced-form analysis, this can capture a

seller’s ability to satisfy on-time delivery, which can be based on a measure of past-shortages.

Without adding dynamics into the problem, the question of keeping Xj static in the model is mostly

a Heuristics issue. I have to make it clear that the current behavioral assumption is that buyers do not

internalize shortages when choosing among sellers. Xj is now thought as an exogenous measure of

quality (may be information given by the FDA about manufacturer j).
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If buyers were to internalize shortages, they should know that a seller offering low prices is linked

to higher supply qj, and that a higher demand for manufacturer j’s products QD
j (.) means more severe

shortages if the realization of ε l is bad. Buyer’s demand function does not incorporate qj so it does not

directly incorporate shortage risks beyond what is captured by pjthrough QD
j (pj, p−j, X). Fundamen-

tally, a buyer should NOT value past shortage history beyond the information this history is providing

about future shortage risks, i.e. what the buyer really values is for instance E[Xjt|Xjt−1, Xjt−2] or written

otherwise E[Xjt|Ht(X)]. Thus, a buyer should only value shortage history to the extent it is expected to

predict future shortages: Pr(Shortaget|Shortaget−1). So Cov(Xt, Xt−1) is what matters?

For now, I assume there is only one buyer (one GPO buying for the entire U.S. market). If I assume

instead that I have a continuum of small buyers (each individual hospital is small), then it is reasonable

to assume that each individual hospital cannot “move” the market by itself. Thus, if each buyer i is

small, they reasonably do not think that an increase in their own demand for products manufactured

by j QD
ij (.) will create a shortage.

This is thus a behavioral assumption that buyers choose manufacturers based on prices and static

quality score → this should be kept constant when doing counterfactuals.

Aside note: in my logit demand model, ξ jt may capture risky firms. I may also write a more complicated
version in which I include shortage in demand directly (i.e. I allow buyer to directly internalize shortage risks),
instead of making it dynamic, by setting µε l = G(Xj, ξ j), that is by mapping the supply shock to one-time
delivery.
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Appendix D - Estimation Details

D.1. Defining Products and Drug Markets

The final dataset is a balanced panel dataset at the fiscal quarter level for the period January 2002 to

December 2019. A unit of observation is a drug manufacturer (defined by a manufacturing plant),

molecule-form product, fiscal quarter. Drug products are defined at the FDA’s National Drug Code

(NDC) 5-4 level (labeler and molecule-dosage-form level, not taking into account commercial package

size). We compute for each drug-product the average price over package size. Note that sales (in USD

and number of services) displayed in the Medicare Part B data are reported at the HCPCs level, which

are service codes that can be linked with NDc 5-4 directly. One HCPCs code generally corresponds to

one administration of a drug.

Table D1: Correlations between Prices and Reliability Score

Fraction of Time Not Short in Past Quarter 3 Categories Score

Unit Price (AWP, 2010 USD) 0.030 0.033
Unit Price (WAC, 2010 USD) 0.028 0.032

Notes: This table compares data correlations between “contracted” drug unit prices, obtained from the RedBook (AWP or WAC) and the
reliability score measure Xjmt defined in Section 4.2. m defines a molecule-form market (an homogenous generic drug product), j denotes a
drug-product at the manufacturer level, within this molecule market, and t is a fiscal quarter. I use two alternative measures of ‘reliability”.
The first one (left column) computes the fraction of time firm j selling in product-market m was not short in the past quarter. The second one
(right column) creates a three-dimensional measure of reliability. In both cases, the correlation between prices and reliability is positive, but
small (round 3%).
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Table D2: Number of NDCs 5-4 and Labelers by Drug market

p50 mean sd min p25 p75 p95 max N Markets

Molform Number of NDCs-54 3 7.55334728 11.31705285 1 1 8 34 70 956
Market Number of Labelers 2 3.575313808 3.807622199 1 1 5 12 22 956

ATC-4 Number of NDCs 5-4 14 27.96697626 33.45622747 1 5 42 103 182 969
Market Number of Labelers 8 10.29132231 8.816399539 1 3 16 30 38 969

ATC-5 Number of NDCs 5-4 3 7.150219298 9.338635912 1 1 9 28 61 914
Market Number of Labelers 2 3.692560175 3.525002142 1 1 5 12 18 914

Notes: The FDA’s National Drug Code (NDC) identify drugs using a unique, three-segment number, under the format “5-4-2”. The first
set of scriptsize in the NDC identifies the labeler, such as the drug manufacturer, repackager, or distributer. The second set of numbers is
the product code, which identifies the specific strength, dosage form (i.e, capsule, tablet, liquid) and formulation of a drug for a specific
labeler. Finally, the third set is the package code, which identifies package sizes and types. The NDC 5-4 level thus defines a drug product
at the labeler-molecule-dosage-form level, without taking into account the commercial package size. The first two rows of the table define
a drug market at the molecule-form level, or ”Molform” (a market is thus composed of many labelers). To form markets, I leverage NDC
5-4 drug names. Each unique identifier at the NDC 5-4 level displays several generic and branded drug names across FDA datasets (Orange
Book, NDC Directory, FDA listings and Drug Shortages data, RxMix). I create crosswalks in which all NDCs 5-4 that can be found in at
least one this dataset under the same drug name are part of the same molecule-form markets. The second four rows of the dataset define
a drug market at the Anatomical Therapeutic Chemical (ATC) levels. This classification, created by the World Health Organization, divides
active drug substances into different groups according to the organ or system on which they act and their therapeutic, pharmacological and
chemical properties. The ATC-4 level groups drugs belonging to the same chemical subgroup (e.g: the ATC-2 subgroup A10 refers to drugs
used in diabetes; the ATC-4 chemical subgroup A10BA contains only ”Biguanides”) while the ATC-5 level is more dis-aggregated and groups
drugs sharing the same chemical substance (example: the ATC-5 A10BA02 contains only ”Metformin”).
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D.2. Plant Location-Specific Statistics

Table D3: Shortages, Prices and Sales by plant Location

Plant location Variable Median Mean Std N Obs

Fraction of Time Short by Quarter 0 0.071 0.247 59,064
Shortage Dummy 0 0.089 0.284 59,064
Never Short Dummy 0 0.386 0.487 59,064
Unit Price (AWP, 2010 USD) 6.768 123.155 424.670 59,064

OECD Unit Price (WAC, 2010 USD) 5.858 104.130 363.898 53,586
Package Price (AWP, 2010 USD) 271.270 675.988 1,116.624 58,922
Package Price (WAC, 2010 USD) 216.760 562.212 920.184 53,586
Allowed Services, Medicare B 129,693 6217636.336 19673338.652 32,645
Allowed Charges, Medicare B 359,800.156 9130123.612 29437215.085 32,645
Payments, Medicare B 285,100.125 7621867.040 25412284.679 32,645

Fraction of Time Short by Quarter 0.0 0.138 0.329 130,621
Shortage Dummy 0.0 0.169 0.375 130,621
Never Short Dummy 0.0 0.183 0.387 130,621
Unit Price (AWP, 2010 USD) 2.173 43.021 173.338 130,621

South-East Asia Unit Price (WAC, 2010 USD) 0.441 27.076 127.359 128,018
Package Price (AWP, 2010 USD) 168.314 446.732 669.476 130,621
Package Price (WAC, 2010 USD) 57.319 159.507 361.903 128,018
Allowed Services, Medicare B 751,304.600 7690111.939 23180861.470 93,056
Allowed Charges, Medicare B 974,533.562 14905242.461 43466409.027 93,056
Payments, Medicare B 776,760.750 12334883.005 39091898.607 93,056

Fraction of Time Short by Quarter 0 0.115 0.309 76,062
Shortage Dummy 0 0.136 0.342 76,062
Never Short Dummy 0 0.295 0.456 76,062
Unit Price (AWP, 2010 USD) 0.917 66.115 362.792 76,062

U.S. Unit Price (WAC, 2010 USD) 0.637 44.715 268.170 57,817
Package Price (AWP, 2010 USD) 97.928 344.659 852.468 76,044
Package Price (WAC, 2010 USD) 70.075 252.711 648.128 57,817
Allowed Services, Medicare B 223,228 2988682.442 17326919.340 37,059
Allowed Charges, Medicare B 188,267.094 13562407.301 60764743.574 37,107
Payments, Medicare B 159,123.156 12158999.404 59253764.036 37,107
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D.3. Parameter Estimates and Elasticities

Table D4: Parameters Estimates of the Structural Model

Parameter Description Estimate SE

α Price Sensitivity -0.611 0.255
Demand β Taste for Reliability 0.004 0.007

λ Brand Dummy -0.013 0.001

Shock ωl

µωH Mean (Domestic) -0.345 0.009
µωFS

Mean (Foreign, South-East Asia) -1.128 0.006

µωFN
Mean (Foreign, OECD) -0.621 0.004

σωH Variance (Domestic) 1.490 0.011
σωFS

Variance (Foreign, South-East Asia) 1.393 0.023

Supply σωFN
Variance (Foreign, OECD) 1.075 0.016

Firm’s TFP γl

µγH Mean (Domestic) 0.011 0.008
µγFS

Mean (Foreign, South-East Asia) 0.417 0.103

µγFN
Mean (Foreign, OECD) 0.658 0.0223

σ2
γH

Variance (Domestic) 1.15 0.002
σ2

γFS
Variance (Foreign, South-East Asia) 0.08 0.001

σ2
γFN

Variance (Foreign, OECD) 0.019 0.003

Trade Cost τl

ϕtariff Log Tariff Parameter 0.884 0.178
ϕdist Log Distance Parameter 0.013 0.002

Fixed Cost FCl

µFCH Mean (Domestic) 2.837 0.012
µFCFS

Mean (Foreign, South-East Asia) 2.106 0.084

Location µFCFN
Mean (Foreign, OECD) 2.559 0.012

Choice σ2
FCH

Variance (Domestic) 0.01 0.002

σ2
FCFS

Variance (Foreign, South-East Asia) 0.016 0.003

σ2
FCFN

Variance (Foreign, OECD) 0.021 0.005

Notes: This table reports parameter estimates for Section 5.4. The first column describes the estimation step.
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Table D5: Demand Estimates (Beta Coefficients)

Dep. var: logit market shares OLS IV

(1) (2) (3) (4) (5) (6)

Price diff -0.012∗∗ -0.01193∗∗ -0.01188∗∗ -0.6111∗∗ -0.6106∗∗ -0.6101∗∗

[0.00481] [0.00481] [0.00481] [0.255] [0.2552] [0.2551]

Reliability Score (0-1) diff 0.00865 0.00418
[0.00681] [0.00744]

Reliability Score, categorical diff 0.01449∗∗ 0.00964
[0.0066] [0.00725]

Brand Dummy -0.0252∗∗∗ -0.0201∗∗∗ -0.01293∗∗∗ -0.01774 ∗∗

[0.00096] [0.0013] [0.00035] [0.0054]

Observations 69,816 69,816 69,816 66,931 66,931 66,931
F-stat 56.229 53.864 55.419 55.743 53.616 55.086
Drug Market Fixed Effects ✓ ✓ ✓ ✓ ✓ ✓

Instruments : × × × Location-specific wages & tariffs

Notes: ∗p < 0.1, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01. All coefficients are beta coefficients (standardized) Standard errors in parenthesis are clustered
at the market level. A market is defined at the molecule-form-year-quarter level. Balanced Panel of Sterile Injectable Drugs, from January
2002 to December 2019. All regressions include drug market fixed effects. The reliability measure ”Reliability Score (0-1)” is computed as
the fraction of time not short during the previous quarter, at the NDC 5-4 level. The alternative measure ”Reliability Score, categorical ” is
defined as a three-levels categorical variable. Level 3 corresponds to no shortages in the previous quarter. Level 1 corresponds to less than
15% of time not short in the previous quarter (i.e. the firm is mostly short). Level 2 corresponds to anything in between.

Table D6: Demand Patterns: Elasticities

Elasticity with respect to

Foreign plants’ prices Domestic plants’ prices All plants

Parameter Description Estimate SE Estimate SE Estimate SE

ηjj ≡
∂sjmt

∂pjmt
Own-price elasticity (Mean) -4.39 1.44 -2.122 0.86 -3.964 1.03

ηjk ≡
∂sjmt

∂pkt
Cross-price elasticity (Mean) 2.81 0.74 0.341 0.038 2.37 0.59

Notes: Average own and cross-price elasticities across all products at the molecule-form market level and over fiscal quarters. Cross-price
elasticities are computed using mean over all competitors within a market.
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Table D7: Moments: Mean Estimates

Outcome Description Estimate SE

Mean Capacity Yield (Share of Supply Surviving Shock)
ω̄H Domestic 0.431 0.025
ω̄FS Foreign, South-East Asia 0.303 0.011
ω̄FN Foreign, OECD 0.393 0.038

Mean Shortage Probability

ρ̄H Domestic 0.701 0.039
ρ̄FS Foreign, South-East Asia 0.834 0.0041
ρ̄FN Foreign, OECD 0.712 0.053

Mean Marginal Cost

c̄H Domestic 1.916 0.0051
c̄FS Foreign, South-East Asia 0.276 0.0027
c̄FN Foreign, OECD 0.580 0.0043

Mean Fixed Cost

F̄CH Domestic 12.172 0.049
F̄CFS Foreign, South-East Asia 8.161 0.023
F̄CFN Foreign, OECD 10.294 0.073

Mean Firm’s Markup

m̄H Domestic 2.057 0.239
m̄FS Foreign, South-East Asia 0.599 0.087
m̄FN Foreign, OECD 0.0983 0.044
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D.4. Estimation Details

1. Estimating the Distribution of Supply Shocks: Nested Fixed Point Algorithm

The parameters of the distribution of the shock and the equilibrium supplied quantities are jointly

determined, creating a ”nested fixed point problem”. The outer problem is the estimation of the

parameters of the distribution of the shock µε l and σε l , while the inner problem is the computation of

the equilibrium quantities qjmt(µε l , σε l ) given these parameters.

I solve this problem using an iterative or inner-outer estimation procedure:

1. Initialization: I start with some initial guesses for the parameters of the distribution of the shock

ε l(j)t.

2. Inner Loop (Equilibrium Computation): Given these parameters, and previously estimated de-

mand parameters, I compute the equilibrium quantities qjmt(µε l , σε l ) using my fixed point iteration

method. Equilibrium quantities are given by the first-order condition of the firm’s problem:

−
(
1 + ηjjt

)︸ ︷︷ ︸
price elasticity


Pr(no excess demand)︷ ︸︸ ︷

1 − F

(
QD

jmt(p, X)

q∗jmt

)
contracted quantities︷ ︸︸ ︷

QD
jmt(p, X, ξ)

∫ QD
jmt(p,X)

q∗jmt

0
ϵ f (ϵ)dϵ︸ ︷︷ ︸

expected share of surviving capacity in the event of a shortage

= q∗jmt

3. Outer Loop (Parameter Estimation): Given the computed equilibrium quantities qjmt(µε l , σε l )

from the first step, I estimate the parameters of the distribution of the shock using GMM with

moment conditions equating the model-predicted probability of shortage with its empirical coun-

terpart, the fraction of time short within a quarter for each firm in the data.

4. Convergence Check: I eventually check if the estimated parameters have converged (i.e., the

change in the parameter estimates is below a certain tolerance). If not, I update the parameter

guesses with the new estimates and go back to step 2. I iterate between these two steps until con-

vergence, i.e., until the estimates of the parameters and the equilibrium quantities stop changing

significantly between iterations.

2. Estimating the Distribution of Productivity Shocks using a Simulated Method of Moments

Under Revision

D.5. Details on Model Simulation

The process involves solving the optimization problem for each firm sequentially, taking into account

the choices of other firms in the market in order to find a Nash equilibrium. I then iterate over all
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firms until I reach a stable equilibrium where each firm’s best response function is consistent with the

choices of other firms (i.e. until the changes in prices, quantities, and location choices (thus in Xjmt)

are below a specified tolerance level, at which point I consider the equilibrium to be reached.). This

iterative process aims to capture the strategic interactions among firms in a competitive market setting.

1. Initialization: I set initial guesses for location, prices, and reputation (Xj) for each firm in the

market. This allows to compute initial market shares for all firms using the logit market share

formula and then compute demanded quantities (Qj) based on prices and reputation.

2. Optimization preparation: For each firm j, I set initial guesses for prices (pj) and supplied quan-

tities (qj), taking the current choices of other firms’ prices and reputation as given. I solve each

firm’s profit maximization problem using Particle Swarm Optimization, a global optimization

method117

3. Optimization: I solve the profit maximization problem for each firm j, given the current state of

the market (i.e., other firms’ prices and reputation). This involves:

(a) Computing firm j’s market shares and demanded quantities (Qj) based on the current values

of prices and reputation.

(b) Plugging these values, along with the supplied quantities (qj), into the profit function and

optimizing.

4. Update: I iterate through all firms in the market and update their equilibrium prices, supplied

quantities, location, and reputation (Xj) based on the optimization results. For each firm, the

algorithm compares the profit in both locations and chooses the location that provides the highest

profit.

5. Market shares update: Update market shares for all firms using the logit market share formula,

taking into account the updated prices, reputation, and demanded quantities (Qj).

6. Convergence check: Check whether the market shares, prices, and supplied quantities have con-

verged. If not, go back to step 3 with the updated values and repeat steps 3-5.

This iterative approach allows each firm to optimize its profit given the current state of the mar-

ket (other firms’ prices and reputation). It also reflects the real-world situation where firms do not

jointly optimize their profits but instead compete with each other by optimizing their individual profits.

117Particle Swarm Optimization is a computational method that optimizes a problem by iteratively trying to improve a
candidate solution with regard to a given measure of quality. It solves a problem by having a population of candidate
solutions, here dubbed particles, and moving these particles around in the search-space according to simple mathematical
formula over the particle’s position and velocity.
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D.6. About reintroducing unobserved heterogeneity ξ jmt

The estimation of my logit demand model does not incorporate a Berry-style unobserved heterogeneity

term, ξ jmt. Instead, I rely on the rich structure of my panel data to add market fixed effects that controls

for unobserved heterogeneity across molecule-quarter markets.

Compared to a standard logit demand model, the necessity to solve for endogenous market shares

and censoring add here several estimation issues. I can easily recover the ξ jmt parameters using the

standard logit inversion procedure for all firms not being shorts (ξ jmt is simply the residual from the

logit model, and captures the difference between the observed market shares and the logit predicted

shares). However, I cannot do the inversion for firms being short. In this case indeed, the observed

shares resulting from the observation for sold quantities do not correspond to the classical demanded

shares; these shares are endogenously affected by supply shocks. This is a typical censoring issue; I

only observe the ”logit shares” in absence of shortages, and I observe a truncation of these shares for

firms that are shirt, due to conditions of excess demand.

I discuss here a solution that could be implemented to recover the ξ jmt terms inside logit mod-

els affected by censoring issues. This solution would involve parametrizing the distribution of the

ξ jmt and carrying a Heckman-type correction to estimate the deviation from the ”true” ξ jmt dur-

ing shortage spells. I could assume that unobserved heterogeneity follows a normal distribution

ξ jmt ∼ Normal(µξ , σξ) (which I can recover in the absence of shock via logit inversion ). During

shortage spells however, we would only observe ξ jmt + rjmtwhere rjmt is some extra shortage-induced

costs (for instance, a restocking cost):

ξ =

ξ jmt when qjmtε lt ≥ QD
jmt(p, X)[no shortage]

ξ jmt + rjmt when qjmtε lt¡QD
jmt(p, X)

And we can compute conditional expectation easily in closed form for normally distributed variables,

as a function of the inverse Mills Ratio:

E[X|X < Y] when X∼ Normal(µ, σ)is: = µ + σ

(
ϕ((Y − µ)/σ)

1 − Φ((Y − µ)/σ)

)
︸ ︷︷ ︸

Inverse Mills Ratio

with ϕ PDF and Φ CDF of the Normal

I would thus observe E[ξ jmt] absent of shortages and E[ξ jmt|Shortjmt, params] when there is a shortage.

Implementing a Heckman correction version would then follow two steps:

Step 1: Selection Equation First, we estimate a model that predicts the probability of observing

ξ jmt (i.e. the probability that there is no shortage). This is directly given in my case by the probability

of shortage:

Pr(shortage)jmt = Pr
(

qjmtε lt < QD
jmt(p, X)

)
= Pr

(
ε l(j)t <

QD
jmt(p, X)

qjmt

)
= F

(
QD

jmt(p, X)

qjmt

)

where F(.) is the CDF of ε which follows a Logit Normal distribution with mean µε and variance

normalized to 1.0.
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From this model, I must calculate the Inverse Mills Ratio (IMR) for each observation. The IMR is

normally given by the ratio of the PDF to the CDF of the standard normal distribution, evaluated at

the predicted values from the selection model. But in my case, ε follows a Logit Normal distribution,

not a standard normal distribution. The IMR for a non-standard normal distribution (or any other

distribution) is not as straightforward to calculate as it is for a standard normal distribution. In the

case of a Logit Normal distribution, there is not a simple closed-form expression for the IMR. Instead,

I would need to compute the ratio of the PDF to the CDF numerically for each observation, using the

specific parameters of the Logit Normal distribution:

λ(Zjmt) =

f
(

QD
jmt(p,X)

qjmt

)
F
(

QD
jmt(p,X)

qjmt

)
Step 2: Outcome Equation

Next, I must include the IMR as an additional variable in the logit model. The modified logit model

would look something like this:

vijt = Xjmt ∗ β − α ∗ pjmt + λgjm + ξ jmt + δ.λ(Zjmt) + ϵijt

where λ(Zjmt) is the IMR calculated in step 1, and δ is the coefficient on the IMR, which measures the

extent of selection bias.

By including the IMR in the model, I could control for the selection bias that arises due to the

observation of ξ jmt only when there is no shortage.
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Appendix E - Counterfactuals Details

E.1. Counterfactual Outcomes: Deviation from Baseline

Table E1: Comparing Counterfactual Equilibrium Outcomes

% Deviation from Baseline

Scenario 1: ReShoring Scenario 2: SR Price Variation Scenario 3: Enforcing Penalties

Mean Range SE (Mean) Mean Range SE (Mean) Mean Range SE (Mean)

Shortage Outcomes

Pr(Shortage) -3.98 [-10.29, 3.13] 1.95 25.06 [3.67,67.01] 3.90 -9.13 [-46.03, 7.01] 1.13
Eωl [% Excess Demand] 9.74 [2.29,13.24] 3.06 -26.35 [-92.35, 19.90] 1.92 -16.30 [-53.70, 4.62] 1.05
Eωl [Q

DExcess Demand] 23.59 [16.71, 26.44] 3.43 -53.28 [-157.65, 17.48] 2.12 627.93 [-384.35, 1187.30] 39.00

Firm-specific Outcomes

pjmt (unit price) 27.63 [2.34, 48.42] 1.25 -0.09 [-5.24, 3.12] 0.22 11.94 [-1.27, 18.80] 0.13
qjmt (capacity) -9.07 [-16.00, 1.11] 2.29 -8.37 [-47.46, 15.86] 1.81 37.88 [-17.62, 67.44] 1.99
Eωl [πjmt] (firm’s profit) 3.37 [1.42, 7.37] 0.51 9.83 [2.09, 28.26] 0.50 19.29 [-17.33, 58.63] 1.13
cjmt (marginal cost) 16.71 [7.49, 28.70] 2.04 0.85 [-3.43, 5.30] 1.86 -13.41 [-20.75, -2.60] 2.08
sjmt (market share) 0.17 [0.17, 0.18] 1.23 2.91 [0.34, 7.06] 0.28 75.52 [-11.63, 79.97] 1.07

Market-specific Outcomes

Adjusted HHI 3.03 [1.01, 4.73] 0.36 5.20 [0.37, 13.35] 0.35 47.11 [-0.92, 59.28] 5.04
Share firms abroad (South) -15.48 [-39.75, 3.54] 4.0e-16 18.25 [10.13, 26.08] 4.4e-16 -48.29 [-57.10, -5.82] 1.6e-15
Share firms abroad (North) -41.73 [-70.76, -14.62] 7.0e-16 -32.70 [-49.12, -16.96] 7.0e-16 -10.69 [-35.74, 10.61] 8.8e-16

Welfare Outcomes

Expected Utility 1.37 [0.39, 2.20] 0.17 3.63 [0.18, 9.29] 0.17 31.62 [-2.60, 38.73] 1.11
Share Outside Option -0.70 [-1.15, -0.14] 0.09 -1.87 [-4.88, -0.01] 0.08 -41.89 [-52.94, 5.28] 0.21

Notes: This table reports, for each counterfactual experiment, the percentage deviation in equilibrium outcomes from the current baseline. The first three column reports coefficients for the first
counterfactual (reshoring manufacturing plants to mainland U.S.) [Section 6.2]. The next three column reports coefficients for the second counterfactual (allowing for short-term price variation
post shortages). Under this counterfactual, a firm’s price varies post-shock as a function of the share of missing supply in the market (market level excess-demand) [Section 6.3]. The last
three column reports coefficients for the third counterfactual (enforcing penalties for failures to supply) [Section 6.4]. The table rows report equilibrium outcomes. I compute the percentage
deviation of each variable from the baseline under each counterfactual scenario (at the manufacturing firm j or market level m). I then report the mean percentage deviation from baseline, over
all drug markets m and time periods t. I also report the range of values obtained over all markets and the standard error of the mean. The first three rows report shortage-specific outcomes: the
probability that a shortage occurs, the expected share of excess demand (shortage quantity) and the expected excess demand (quantities). The following 5 rows report firm-specific outcomes:
a firm j’s unit price, production quantities, expected profit, marginal cost and logit market share. The following 3 rows report drug market-specific outcome (defined at the molecule-form and
time period level): market concentration as measured by the adjusted Herfindhal index, the share of firms choosing to locate abroad, either in the South or in the North. The last two rows
report consumer welfare measures: expected utility from the logit (consumer welfare) and the share of patients choosing to not consume a drug (outside option).
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E.2. Re-shoring Counterfactual: Details

1. Political and Institutional Context of Reshoring Policies

From 1976 to 2006, the Internal Revenue Code exempted from taxation corporate income generated

in U.S. territories. The tax break was estimated to have allowed drug companies to save the 2022

equivalent of $235 million per year, which represents 70 cents per American. The end of the tax break

in 2006 incidentally coincided with the start of generic drugs’ offshoring.

Recent public news have emphasized the need to reshore to such U.S. territories, and in particular

to Puerto Rico to alleviate U.S. drug shortages (Washington Post, January 2023). As a result of the

pre-2006 tax break, Puerto Rico indeed has idle plants, a trained pharmaceutical workforce and

relatively low wages compared to the mainland United States. Because Puerto Rico is on U.S. land,

the U.S. regulator (the FDA) also does not meet the same impediments as abroad when it comes to

implementing inspections.118 There are however a couple of issues related to “near-shoring” to Puerto

Rico specifically. Firstly, Puerto Rico is subject to natural disaster: in September 2017, Hurricane Maria

hit Puerto Rico, causing more than 3,000 fatalities and millions of dollars in damage.119 The Hurricane

destroyed most drug manufacturing plants that remained in Puerto Rico and pushed firms to offshore

entirely production. Secondly, Puerto Rico has been subject to many recent power failures and the

fragility of the electricity infrastructures makes it difficult and risky for manufacturers to install their

plants on the island. While re-shoring to Puerto Rico may help in reducing the frequency of shocks

while keeping costs relatively lower than in the mainland U.S., it thus also introduces a potential

for supply disruptions that may be rarer, but bigger in magnitude. I thereby here consider policies

encouraging re-shoring to less risky locations within the mainland United States.

Since 2020, the U.S. government has been discussing potential tax deductions of up to 10 percent

of an organization’s revenue for reshoring production. Republican Brad Wenstrup first carried the

Domestic Medical and Drug Manufacturing Tax Credit, a legislative proposal that would lower the tax

rate on the income from the domestic manufacturing and sales of active pharmaceutical ingredients

and medical countermeasures. The bill would provide manufactures a credit of 10.5 percent of the

net income from the sale of important medical products manufactured domestically, thus effectively

cutting their corporate tax rate in half. In March 2021, President Joe Biden’s American Jobs Plan

further promised to invest $300 billion for U.S. manufacturing, including $50 billion to strengthen

supply chains for critical goods and $30 billion to protect from future pandemics.120 The initial Health

and Human Services response to the executive order is the proposed formation of a public-private

consortium for advanced manufacturing and onshoring of domestic essential medicines production, as

well as a commitment to invest $60 million from the Defense Production Act to develop novel platform

118In particular there is no need for visa and the FDA’s inspectors do not need to announce their visits months in advance
as they do not require foreign approval and firms’ sponsorship to cross borders.

119Several pharmaceutical companies with manufacturing and distribution operations on the island were hit hard, including
Pfizer, Amgen and Bristol-Myers Squibb.

120The White House’s June 2021 100-day review of America’s Supply Chains: “Building Resilient Supply Chains, Revitaliz-
ing American Manufacturing and Fostering Broad-Based Growth”

121

https://www.washingtonpost.com/opinions/2023/01/16/fix-drug-shortage-tax-breaks/
https://www.whitehouse.gov/wp-content/uploads/2021/06/100-day-supply-chain-review-report.pdf
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technologies to increase domestic manufacturing capacity for API.

In France, President Emmanuel Macron announced in June 2023 that 50 crucial medicines

would be reshored to France, in Ardeche, with the explicit hope to battle shortages of items like

antibiotics and paracetamol. Under Macron’s plan, $173 million in public money will go to support

eight of the new reshoring projects, including for amoxycillin – produced by British pharma giant

GSK in northwestern France – as well as anaesthetics, painkillers and cancer drugs. Drug compa-

nies reshoring to France would also be able to apply for a share of a further 50 million euros in funding.

Note that these public proposals to reshore do not come free of frictions. It may take up to 2 years

to transfer a single product to a new site (which includes processing the transfer, regulatory approvals,

filing, etc.), while building a new facility can top $2 billion and take 5 years. Furthermore, note that

changing the cost of offshoring via a subsidy to produce in the home location may not necessarily

result in less shortages. If firms tend to insure more against disruptions by building buffer more

abroad, because it is cheaper to do so than at home, then disruptions may get worse once we oblige

firms to reshore.

2. Additional Equilibrium Outcomes
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Figure E1: Reshoring counterfactuals

Notes: The y-axis displays changes in equilibrium outcomes (as prices, share of excess demand or consumer surplus), measured in percentage
deviation from the current baseline measures. The x-axis displays changes in the rate of the reshoring tax break (the baseline is 0). The
suggested U.S. tax break being around 10%. We may expect a 50-75% relocation of firms in the U.S. compared to today for a 10% tax break
(right figure), as well as higher market concentration and higher firm’s expected profit (left figure).

E.3. Short-term Price Variations Counterfactual: Details

1. Details: Changes in Manufacturers’ Expected Revenues

Firm j’s expected revenue now depends on whether j is short and whether k ≥ 1 other firms are short

in the market. Three situations may arise. Firstly, if no firm is expected to be short in the market, firm
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j’ expected revenue remains unchanged and equals to

[
1 − F

(QD
jmt(p, X)

qjmt

)]
QD

jmt(p, X)pjmt

Secondly, if firm j is not short but there are k ≥ 1 firms in the market short, firm j’s expected revenue

becomes å
[
1 − F

(QD
jmt(p, X)

qjmt

)]
QD

jmt(p, X) p̃jmt where

p̃jmt =

(
pjmt + γexcess

Jm

∑
k ̸=j

max
{

δexcess
jmt , 0

}
pjmt

)

The coefficient γexcess represents price sensitivity - the rate at which firm j’s price increases in proportion

to the amount of excess demand. The maximum function ensures that price increases only occur when

there is positive excess demand, such that firms whose expected supply is above their own buyer’s

demand are not counted.121 Larger γexcess coefficients mean larger price increase post shortage.

Finally, if firm j is short and k ≥ 1 other firms are also short, firm j’s expected revenue becomes

[
1 − F

(QD
jmt(p, X)

qjmt

)]
QD

jmt(p, X)

(
1 + γexcess

Jm

∑
j=1

max
{

δexcess
jmt , 0

})
pjmt

We can summarize the new pricing scheme by combining all three cases together.122 The only difference

among these three scenarios is whether the new price scheme enters a manufacturing firm’s expected

profit function through the ”non-short” part or under the ”short” part.123 We can thus rewrite:

p̃jt =

pjmt if no firms short

pjmt + γexcess ∑Jm
k=1 max

{
δexcess

kmt , 0
}

pjmt if k ≥ 1 firms short

121Recall that we assume for now surplus disposal. Firms mostly benefits from competitors’ shortages through the increase
in prices of their own products

122Under the case where no firm is short the excess demand terms sum down to zero. Similarly, under the scenario where
j is not short but one or more other firms are, the excess demand part for j will remained capped to 0

123Recall that baseline firm j’s expected revenue is defined as a weighted sum of time short and not short: E[Rjmt] ≡
No excess demand︷ ︸︸ ︷[

1 − F

(
QD

jmt(p, X)

qjmt

)]
pjmtQD

jmt(p, X) +

Excess demand︷ ︸︸ ︷
pjmtqjmt

∫ QD
jmt (p,X)

qjmt

0
e f (e)de
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2. Additional Equilibrium Outcomes
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Figure E2: Allowing Short-term price Variations Post Shock

Notes: The y-axis displays changes in equilibrium outcomes (as prices, share of excess demand or consumer surplus), measured in percentage
deviation from the current baseline measures. The x-axis displays changes in the price sensitivity parameter γexcess from Equation 13 (the
baseline is 0). The top-left panel plots the percentage deviation from baseline of the average firm’s expected profit, as a function of price
sensitivity to excess demand. South-Est Asia firms (in purple) always witness an increase in expected profit, while U.S-based firms only
obtain higher profits when prices move one-to-one with excess demand. The top-right panel plots changes in supplied quantities, by
location. Supply decreases with price sensitivity levels. U.S.-based plants always supply below the current level, while South-East Asian
firms only supply below the current levels for price sensitivity above one. The bottom left panel shows that both market concentration
(Herfindahl–Hirschman Index, HHI) and overall expected profit both increase. The bottom right panel plots changes in the share of firms in
each location. Pricing capacity results in more Asian-based firms, and less U.S. and OECD-based firms.
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E.4. Penalizing Failures Counterfactual: Details
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Figure E3: Counterfactual: Enforcing Penalties for Failures-to-Supply

Notes: The y-axis displays changes in equilibrium outcomes (as prices, share of excess demand or consumer surplus), mea-
sured in percentage deviation from the current baseline measures. The x-axis displays changes in the penalty rate from
Equation 15 (the baseline is 0). Both market concentration and the expected profit of manufacturers increase with price sen-
sitivity to shortage (by 2 to 10% for HHI and 3 to 23% for Expected suppliers’ profit). Compared to today, allowing price
variations post-shock lead to higher offshoring levels, with 10 to 20% more production offshored to Asian and a sharp 50 to
70% decrease in the share of U.S.-based firms. The expected profit of Foreign plants located in the South increases indeed
more on average with higher price sensitivity to shortage compared to U.S. and OECD-based firms (8-10 percentage point
higher), while the observed supplied quantities of U.S. based plants fall more compared to baseline than Foreign, South-based
plants (by around 40% on average over price sensitivity levels)

E.5. Counterfactual 4: Setting ”Price Floors”

A key characteristics of generic markets is their high level of contestability. The patent expiration of

the branded product the generic copies generally results in the entry of multiple generic manufactur-

ers ready to manufacturer the drug at reduced-costs compared to the innovator. Under the market

institutionalization of perfect substitutability between generics, a procurement system based on online,

reverse auctions creates favorable conditions for the market to unravel. Multiple market observers and

policymakers underline the current dynamics of “race-to-the bottom” to be a key driver of shortages,

creating an environment where only the lowest-cost producer can survive (and be willing to operate in
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the market).

In this counterfactual scenario, I consider how imposing minimum price levels may help mitigating

the current “race-to-the-bottom” dynamics. Price-floors could play two roles here. First, reasonable

price levels may help suppliers make positive profit margins, hereby deterring product discontinuation

and cost-cutting. Second, it may help firms selling above minimum market prices ”signal” production

quality.

Minimum Price Framework. In the absence of any price floor, each firm maximizes profit with re-

spect to own price, which yields our baseline unconstrained optimal price, which depends on marginal

costs cjlt, supply shock ωl(j), supply quantities qjmt and other firms’ prices and characteristics through

the demand function QD
jmt(p, X):

p∗jmt =
cjlt∫ QD

jmt(p,X)

qjmt
0 ϵ f (ϵ)dϵ

The constraint imposed by a price floor p
t

implies that each firm j’s new equilibrium price is given by:

p̃jmt = max{pjmt, p
t
}

The price floor binds on firm j if pjmt < p. The minimum expected profit that firm j can expect to

generate under this framework thus becomes:

Eωl

[
πjmt(p, qjmt; QD

jmt(p, X), cjlt, ωl(j))
]
=

[
1 − F

(
QD

jmt(p, X)

qjmt

)]
pQD

jmt(p, X)

+ pqjmt

∫ QD
jmt(p,X)

qjmt

0
ϵ f (ϵ)dϵ − cjltqjmt − Fc

jmt (21)

For each given molecule market m, the regulator would like to choose a minimum price level that min-

imize the probability of market-wide shortages, or alternatively minimizes the share of excess demand

in the market. I study two alternative specifications for price floor levels.124 Under the first specifica-

tion, the regulator could set, for each market m, minim price levels that minimize the probability that

shortages occurs:

p
t
= arg min

Jmt

∑
j=1

Pr(qjmtωl(j) < QD
jmt(p, X)) = arg min

Jmt

∑
j=1

F

(
QD

jmt(p, X)

qjmt

)
(22)

. If we instead want to minimize the share of expected positive excess demand in the market, the

regulator could set:

p
t
= arg min

Jmt

∑
j=1

1 −
qjmtE

[
ωl(j)t|ωl(j)t <

QD
jmt(p, X)

qjm

]
QD

jmt(p, X)

 (23)

124Another natural candidate for the price floor could be the percentile of the observed distribution of prices in the data.
One could think about whether the price floor must be the same for all manufacturing firms or whether it should vary based
on factors as location, reliability index, average market price, concentration...
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Re-simulating the estimated model under this counterfactual pricing scenario indicate that the estab-

lishment of price floors naturally lead to bunching at the minimum price p
t
. One might question the

incentive for a firm to set its price above the minimum threshold, pjmt > p
t
? Pricing above the estab-

lished minimum could serve as an implicit indicator of superior production quality. In contrast to the

prevailing situation, which assumes complete homogeneity among generic products and therefore, per-

fect substitutability among suppliers, it may allow prices to better capture differences in manufacturing

quality among suppliers.

Simulation results suggest a key advantage of the price floor policy. Compared to the existing

price equilibrium, any regulatory policy that sets a minimum price within a range of +/ − 30% of

the optimal minimum price p
t

yields higher expected utility for consumers. While pinpointing the

precise optimal price floor for every drug market may pose challenges for regulators, this indicates

some flexibility or “margin for error” in determining those levels.

There are potential constraints to this counterfactual policy that need further exploration. For

instance, if firms merely increase their profits due to the price floor without improving manufacturing

quality, it negates the intended benefit.

Appendix F - Data Appendix : Mapping the Generic Drug

Supply Chain

F.1. A Novel Dataset: Details on Data Structure

Each record contains information for one shortage event, and includes the drug name, an indicator for

whether the shortage remains active, the date of first reported shortage, the ending date of the shortage

if it is no longer active, reason for shortage if reported, the type of drug (injectable versus non-injectable)

and AHFS therapeutic drug classification (American Hospital Formulary Service classification).

Drug Shortage Data.Data on drug shortages for the United States were provided by Erin Fox from

the University of Utah Drug Information Service (UUDIS), which compiles information on current and

past shortages that were reported to the American Society of Health-System Pharmacists (ASHP) and

to the Food and Drug Administration (FDA).125 Each record contains information for one shortage

event, and includes the drug name, an indicator for whether the shortage remains active, the date of

first reported shortage, the ending date of the shortage if it is no longer active, reason for shortage if

reported, the type of drug (injectable versus non-injectable) and AHFS therapeutic drug classification

(American Hospital Formulary Service classification). A second-version of this dataset, providing de-

tailed firm-drug level shortage information, was then used to define shortages at the manufacturer level

and identify which firms exactly are driving shortages, which alternative National Drug Codes (NDCs)

125The UUDIS data are richer than the FDA and ASHP data: firstly, they do not only focus on drug considered as medically
necessary, but on all drugs and medical supplies in shortage; secondly, they go farther away in past history of shortages, with
data as far as 1993
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are available, and what are the reasons given by each manufacturer for shortages. This information

was stored under thousands of Word Documents, which I digitized using automatic text processing

and text mining techniques to extract data from text. More details and an overview of these documents

can be found in Appendix F.2. A main limitation of this data is that it does not quantify the missing

product quantities when a shortage occurs. This will be estimated from my model.

FDA’s Orange Book Data. In order to obtain main drug characteristics, I am then linking the

drug shortage data to the FDA’s Approved Drug Products with Therapeutic Equivalence Evaluations

(so called ”Orange Book data”). This dataset records all approved drug products (both branded and

generics) available for consumption in the United States in a year, along with their active manufacturers

(i.e. the NDA or ANDA holders that applied for manufacturing the drug and is legally responsible for

it - it does not need to be the actual manufacturing site due to outsourcing). It also indicates the number

of years since the earliest approval of a manufacturer for a drug, route of administration, dosage forms

and National Drug Codes (NDCs). This dataset allows to find all approved generic drugs for a branded

product and to link them to potential substitutes. I use the Orange Book data to extract the full list of

generic sterile injectable drugs sold on the U.S. market, along with their key characteristics. Indeed, the

drug shortage data only records sterile injectable drugs that went into shortage at least once over the

2001-2019 period. In order to compare sterile injectable drugs that went into shortage to those that did

not, and thus to identify what causes differences in shortage spells across similar drugs, I need the full

list of sterile injectable drugs for the U.S.

U.S. Drug Pricing Data. I also obtain historical price data for all U.S. marketed drugs from the

“Red Book”, a private dataset released from IBM Micromedex. This data gives current clinical and

pricing information about pharmaceuticals and drugs. The Historical Pricing Tables provide pricing

that has been submitted to the Red Book by drug manufacturers, from year 1980 to today, but it only

contains inactive prices are delivered in the ref Pricing Table. For active prices, I web-scrapped the full

active Red Book databases. Details on Pricing can be found in Appendix . The ”Red Book” provides the

Average Wholesale Price (AWP) for each NDC (National Drug Code, a unique numeric identifier given

to medications at the labeler-product-dosage form level), as published by IBM Watson Health. AWP

is the price charged by the wholesaler to the hospitals, which was the price based on which providers

were reimbursed for drugs under Medicare Part B until 2005.126 While there is a payment “cap” for

drugs sold under Medicare Part B, this cap is based on average sales price for the preceding period, so

it should pick up changes in the underlying market price for the drug.

FDA’s Manufacturing Facilities Locations Data. Economic research on drug shortages was long

impeded by the lack of available data disclosing manufacturer names and facilities locations. This

paper relies on a recently released FDA dataset which provides the geographical location of foreign and

domestic drug manufacturing facilities. To implement the Generic Drug User Fee Act in fiscal year 2013

(GDUFA I and II), the FDA began collecting self-reported information on generic drug manufacturing

locations including domestic and foreign active pharmaceutical ingredients (API) and finished dosage

form (FDF) facilities. Implementation of the GDUFA required that every company which wishes to

manufacture a drug for the U.S. market self-registers (including full name and address) and pays a

126Most injectable drugs are administered in hospitals and thus potentially target a reasonably large population of elderly
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fee to the FDA. The first dataset released by the FDA in 2016 included all manufacturers who self-

registered (many of whom never completed the application process). In late 2019, the FDA published a

new dataset including only those facilities who actually paid the GDUFA fee, and are thus theoretically

allowed to produce a drug or its main components for the United States.For each registrant, the data

contains: firm name, facility full address, a unique Facility Establishment Identifier (FEI) and the type of

drugs produced (API, FDF, both or CMO). I combine these data to new confidential data obtained from

the Center for Drug Evaluation and Research (CDER) at the FDA, which provides the geographical

location of foreign and domestic drug manufacturing facilities for all years 2000-2020.

There are two issues with this data: first, paying the GDUFA fee is not tied to actually producing

and marketing the drug. The FDA found in 2019 that among all generic drugs with approved ap-

plications, only 39 percent were observed to be marketed. . . As a consequence, the FDA still does not

know exactly who makes which drug.127 Secondly, the FDA data identifies the address of the site and

the organization paying the Generic Drug User Fee, but no information is available on the products

actually manufactured at the site nor their prices or volumes.

U.S. and Foreign Customs Data. I solve these issues by linking the FDA datasets to U.S. and

Foreign customs data obtained through a private company, Descartes Datamyne. Datamyne collects

and organizes shipping manifests and customs records from government agencies and private compa-

nies, for the U.S and most countries in the world. They have U.S. imports data from 2004 to 2020 for

all pharmaceutical goods. The data is at the shipment level, and includes shipments of all imported

drugs from point-to-point in the world. Most publicly available trade datasets such as the Comtrade

data aggregate trade flows at the sector level, and do not allow to track imports/exports of individual

goods. For each good imported to the U.S. via freights or air, the data provide importer and exporter

names and locations, port of arrival and departure, final destination, precise description of the shipped

good, quantity and weight. Shipments data are at the shipment level, i.e. each shipment imported to

the U.S. is indexed by the day it entered U.S. customs. For each drug extracted from the shipment

description (see Appendix ??), I aggregate the total quantity and weight of products imported to the

U.S. at the manufacturer-month level. To my knowledge nobody used this data to track pharmaceutical

imports.128 This dataset solves two pitfalls of the newly disclosed FDA data. Firstly, it allows me to

link each drug product to its list of foreign manufacturers. Secondly, it allows me to check which of

the manufacturers present on the GDUFA list of payers actually exports products to the United States,

from which date and in which quantity. This empirical contribution is of first-order given that until

now, the lack of a reliable registry of manufacturing plants has made it difficult to estimate the true

market share of foreign-made products, and any potential link with supply disruptions.

Several other datasets were used in this paper, among which Medicare Part B data to obtain quar-

terly sales quantities (which I will use in my model, as it allows to compute Medicare Market Shares)

and firm-level data web-scrapped based on my list of NDCs from Cortellis Clarivate. This firm provides

127This was confirmed by a call I had with FDA economists from the Drug Shortage Team
128My talks to the FDA confirmed they do not have access to it and/or did not know about it. Other economists and

research centers I contacted also do not have trade data other than the Comtrade data
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data on labeler firm characteristics, such as firm’s size, annual revenue, number of employees. I even-

tually use FDA’s data on plants inspection, and another dataset providing warning letters sent to plants

post-inspection to signal manufacturing-quality issues, both obtained through FOIAs.

The final data is a balanced panel of 1,220 sterile injectable drug (defined at the molecule-form level)

aggregated at the year-month-manufacturer level. After matching the U.S. Customs to the shortage data

and the FDA list of manufacturing facility locations, I obtain the list of all shipments, for all years 2004

to 2019, for which we find U.S. imports of sterile injectable drugs. I then match back the data to the

shortage dataset, so that for each sterile injectable drug, we get a full list of manufacturers, quantity

of products imported and indicators providing information about the status of shortages for all year-

month dates between January 2004 and December 2019.
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F.2. Probabilistic Record Linkage

1. Overview of the Data Structure

Figure F1: Drug Shortage Data (firm-level). Source: UUDIS131



Figure F2: Detailed container descriptions from Digitized U.S. Import Customs. Source: Descartes

Datamyne

2. Matching Techniques

An issue with these new data is that no common identifier exists, which makes it challenging to join

corresponding observations from different datasets. Building a usable dataset requires significant

cleaning and matching efforts, as most data are in text and vary substantially in terms of format, both

within a dataset and across datasets. We often have drug names rather than drug codes, or different

level of drug codes that do not match directly from one to another, or manufacturer names or addresses

rather than facility numbers. Two examples among many, the GDUFA dataset of manufacturing facility

locations lacks consistency in reported manufacturer names over years, as well as in manufacturer

addresses. The U.S. Customs data requires fuzzy string matching on a vector of pre-defined drug

names in order to extract drug products and dosage forms from the description of shipments. As

mentioned, the void of quantitative economic and health research on drug shortages can be directly

inputed to this lack of comprehensive and unified dataset. In particular, there is no direct mapping

from drug products to manufacturer facilities, an issue that even the FDA faces when trying to identify

risky supply chains.

To give a made-up example, one manufacturer in India is called ”aarti pharmaceuticals limited”.It appears into
the FDA data under this name, but also under ”aarti pharmaceuticals”, ”aarti pharma ltd”, ”india Aartis

drug”, or with typos ”street24aaarti”. This manufacturer has three different plants, each of which has a different
address, and each of these addresses may also be reported under different format and/or with typos. The goal is
to get, for each manufacturer, a unique name and a unique address for each of its separate plant, which allows
to improve matching rates between datasets. Given the data cover most countries in the world, the nature of the
discrepancies in names and addresses is quite diverse. This kind of text problem appears even more acutely in the
U.S. customs data (shipment descriptions with drug names and characteristics may be several paragraph long and
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contain many typos).

To overcome these issues and build a comprehensive dataset that provides both information

on drug products and on their supply chains, I rely on probabilistic record linkage techniques.

Instead of detailing the exact processes used to extract information for each individual dataset

and to link them all together, I describe the general technique used to clean and build data.

Probabilistic record linkage mainly involves four steps:

1. The first step involves pre-processing and text cleaning of each dataset in order to improve sub-

sequent matching rates. The preprocessing step ensures that the datasets to match have the same

formats and that chosen fields are meaningful in matching. This first step consists of two sub-

steps: 1) parsing a field into the relevant subcomponents and 2) standardizing common character

strings.

2. A second step, specific to this project, involves geocoding all drug manufacturing facilities. For

this purpose, I build an algorithm that automatically queries the Google Maps API129 and returns

a unique longitude, latitude and normalized Google address for each facility. This step is applied

to both facilities listed by the FDA as generic drug manufacturers for the U.S. market (GDUFA

and CDER datasets) and to shipping firms from the U.S. Customs Imports Data. In these three

datasets, I originally have firm names and addresses, but their formats are non-normalized (they

vary both within a dataset and across datasets). This geocoding step allows me to create cross-

walks of manufacturing company and facility names and improves my fuzzy matching algorithm

in step 3.

3. In a third step, I apply a fuzzy matching algorithm to merge each data entry on its closest match.

To match manufacturing facilities together, I first match plants based on their cleaned names. I

then use geocoded locations (longitudes and latitudes) to match manufacturing plants that did

not obtain a perfect match using the first round of fuzzy matching. For those last set of facilities

I do not match exactly based on normalized names and locations, I use a measure of distance

based on longitude and latitude (imperfectly matched facilities with similar names and zip code

which are less than 10 kilometers away from one another are grouped together).130

• I also use these fuzzy matching techniques to match drugs across datasets (each drug may

be recorded under different names or different drug codes; drug codes are not always linked

129The function queries Google maps servers, giving it a string that includes a first cleaned version of manufacturing firm
names and addresses, and return selected geocoded elements of the API

130Some manufacturing plants in Asia have very different formatted addresses (some adding many details like fax numbers
or ownership status), but are obviously the same plant to a human observer. In that cases, Google may return different
longitude and latitude points, or some ”NAs”. To solve this, I proceed in three step. First, I extract the most frequent zipcode
for each manufacturer. Second, I get the most detailed address for the main zipcode, and corresponding longitude/latitude.
Third, I compute the shortest geographical distance between each geocoded plant location and the main geocoded location
for this manufacturer (using ’Haversine’ great circle distance). If distance is below 10 kilometers, I replace coordinates by
those of the main plant

133



to drug names so that I first need to match drug to their National Drug Codes (NDCs) before

matching these NDCs to their different drug names).

4. A last step involves clerically review of matched pairs with low scores and non-matched entries.

Although the pair-similarity scores are correlated with correct matches, they are an imperfect

metric. Typical record-linking processes require several runs, during which I try different combi-

nations of fields, criteria for choosing candidates and their associated weights.

The fuzzy matching algorithm used in this paper is based on the Levenshtein distance between

strings, which matches strings based on a similarity score. This score is based on the number of changes

necessary to go from one string to the other. In particular I use a variation of this Levenshtein distance

metrics called a bigram score, which is computed from the ratio of the number of common letters in the

two strings and their average length minus one, giving higher scores to consecutive strings matching.

3. Matching Results

Geocoding of firm addresses is achieved with a very high success rate. For example, after several

round of cleaning and querying Google Maps, only 2 Indian manufacturers were not geocoded out of

originally 5,800 unique firm names. I have been able to geocode 98% facilities across the U.S. Customs

and FDA’s datasets.

”Shippers” in the U.S. customs data corresponds to the manufacturing facilities from the origin

country (the plant or its administrative office). This is verified by matching the FDA list of manufac-

turing facilities (GDUFA and CDER datasets) to the U.S. customs data. I am able to link 84% of plant

names referenced in the FDA data to at least one corresponding foreign manufacturing firm in the

U.S. Customs Imports data. The remaining 16% may either : i) not actually export to the U.S. or ii)

not appear in the U.S. customs data. A firm may not appear in the U.S. customs data if i) it chooses

not to divulge its name to Customs (around 15% of ”shippers” in the U.S. customs dataset are ”not

declared”), ii) it exports drug products by air instead of maritime shipments (but around 90% sterile in-

jectable drugs are shipped by sea; drugs shipped by air are generally the most expensive and perishable

drugs, as for instance vaccines).

I also link 63% of shortage events to foreign production over the years 2004-2019, by looking at the

description of shipments in the U.S. customs data.

F.3. Building Sales Measures for Drugs Using Medicare Part B Data

I estimate total US demand of each drug based on Medicare Part B data. Using Medicare part B, I can

obtain an estimated measure of 1) the market share of each manufacturer (labeler) for a given drug and

2) the share of total Medicare demand for a drug. I use CMS data from 2006 to 2019 and adjust prices

for inflation to year 2010 dollars.

I first use Medicare Part B reimbursement data from the CMS Part B National summary files. The

key variables are total reimbursements by Medicare (allowed charges or payments) and number of

services billed (allowed services) for a Healthcare Common Procedure Coding System (HCPCS) code
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and year. HCPCS codes are used by providers to bill Medicare for procedures. A typical HCPCS

code represents one administration of a drug. The same drug, defined at the molecule-form level, can

be listed under multiple HCPCS codes representing different dosages. Allowed services are defined

as the count of the number of services performed for a specific Part B procedure minus the denied

services. The allowed charge is the Medicare approved amount for the Part B procedure submitted by

the physician or supplier. Medicare usually pays about 80% of the total allowed charge and the other

20% is the coinsurance share, which is paid by the beneficiary. The data also includes information

about drug package size (amount in one item), package quantity (number of items in the NDC), the

number of billable units per package and billable units per 11-digit NDC.131

Drugs are defined in the CMS data at the HCPCS code level. In order to combine it with my

dataset of drug shortage, which is defined at the drug name level (and contains for each drug multiple

National Drug Codes, NDCs), the data go through several cleaning and merging steps. I start by

extracting, cleaning and merging all yearly files for all HCPCS codes beginning with J (codes J0000

- J0849 indicate “Drugs other than Chemotherapy” and codes J8521 to J9000 indicate “chemotherapy

Drugs”). Some drugs have multiple dosages with different HCPCS J codes. I obtain 762 unique HCPCS

J codes for a total of 652 unique drug names (at the molecule-form level, i.e. for instance ”acyclovir

injection”). The average HCPCS J code contains 16.29 National Drug Codes (NDCs).

I then extract CMS crosswalks linking drug names to HCPCS codes from the Medicare Part B

Pricing Data. I clean drug names in these crosswalks, following the normalization of names used in my

main dataset. I then merge these cleaned crosswalks to the Medicare demand data based on HCPCS

and year. This steps permits to get drug names and drug descriptions for each HCPCS in Medicare Part

B data. I eventually fuzzy match these drug names to my dataset of sterile injectable drugs, following

similar matching techniques as described in Appendix F.2. I eventually match a total of 333 of my

sterile injectable drug to at least one HCPCs code, 234 of which went into shortage at some point over

the period 2006-2019.

131Recall that a NDC is a drug code that uniquely identifies a product and is composed of three parts at the 11-digits level:
a labeler code, a product code and a dosage-form code.
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